Can transcranial alternating current stimulation simultaneously increases and decreases cortical excitability? Supporting evidence from the rat motor cortex

2017 ◽  
Vol 10 (2) ◽  
pp. 404
Author(s):  
M. Mc Laughlin ◽  
A. Khatoun
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan Pozdniakov ◽  
Alicia Nunez Vorobiova ◽  
Giulia Galli ◽  
Simone Rossi ◽  
Matteo Feurra

AbstractTranscranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.


2018 ◽  
Vol 29 (7) ◽  
pp. 2924-2931 ◽  
Author(s):  
M Wischnewski ◽  
M Engelhardt ◽  
M A Salehinejad ◽  
D J L G Schutter ◽  
M -F Kuo ◽  
...  

Abstract Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations and excitability levels in the primary motor cortex (M1). These effects can last for more than an hour and an involvement of N-methyl-d-aspartate receptor (NMDAR) mediated synaptic plasticity has been suggested. However, to date the cortical mechanisms underlying tACS after-effects have not been explored. Here, we applied 20 Hz beta tACS to M1 while participants received either the NMDAR antagonist dextromethorphan or a placebo and the effects on cortical beta oscillations and excitability were explored. When a placebo medication was administered, beta tACS was found to increase cortical excitability and beta oscillations for at least 60 min, whereas when dextromethorphan was administered, these effects were completely abolished. These results provide the first direct evidence that tACS can induce NMDAR-mediated plasticity in the motor cortex, which contributes to our understanding of tACS-induced influences on human motor cortex physiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hisato Nakazono ◽  
Katsuya Ogata ◽  
Akinori Takeda ◽  
Emi Yamada ◽  
Shinichiro Oka ◽  
...  

AbstractTranscranial alternating current stimulation (tACS) at 20 Hz (β) has been shown to modulate motor evoked potentials (MEPs) when paired with transcranial magnetic stimulation (TMS) in a phase-dependent manner. Repetitive paired-pulse TMS (rPPS) with I-wave periodicity (1.5 ms) induced short-lived facilitation of MEPs. We hypothesized that tACS would modulate the facilitatory effects of rPPS in a frequency- and phase-dependent manner. To test our hypothesis, we investigated the effects of combined tACS and rPPS. We applied rPPS in combination with peak or trough phase tACS at 10 Hz (α) or β, or sham tACS (rPPS alone). The facilitatory effects of rPPS in the sham condition were temporary and variable among participants. In the β tACS peak condition, significant increases in single-pulse MEPs persisted for over 30 min after the stimulation, and this effect was stable across participants. In contrast, β tACS in the trough condition did not modulate MEPs. Further, α tACS parameters did not affect single-pulse MEPs after the intervention. These results suggest that a rPPS-induced increase in trans-synaptic efficacy could be strengthened depending on the β tACS phase, and that this technique could produce long-lasting plasticity with respect to cortical excitability.


2008 ◽  
Vol 1 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Andrea Antal ◽  
Klára Boros ◽  
Csaba Poreisz ◽  
Leila Chaieb ◽  
Daniella Terney ◽  
...  

Author(s):  
Michael A. Nitsche ◽  
Walter Paulus ◽  
Gregor Thut

Brain stimulation with weak electrical currents (transcranial electrical stimulation, tES) is known already for about 60 years as a technique to generate modifications of cortical excitability and activity. Originally established in animal models, it was developed as a noninvasive brain stimulation tool about 20 years ago for application in humans. Stimulation with direct currents (transcranial direct current stimulation, tDCS) induces acute cortical excitability alterations, as well as neuroplastic after-effects, whereas stimulation with alternating currents (transcranial alternating current stimulation, tACS) affects primarily oscillatory brain activity but has also been shown to induce neuroplasticity effects. Beyond their respective regional effects, both stimulation techniques have also an impact on cerebral networks. Transcranial magnetic stimulation (TMS) has been pivotal to helping reveal the physiological effects and mechanisms of action of both stimulation techniques for motor cortex application, but also for stimulation of other areas. This chapter will supply the reader with an overview about the effects of tES on human brain physiology, as revealed by TMS.


2021 ◽  
Author(s):  
Elinor Tzvi ◽  
Jalal Alizadeh ◽  
Christine Schubert ◽  
Joseph Classen

Background: Transcranial alternating current stimulation (tACS) may induce frequency-specific aftereffects on brain oscillations in the stimulated location, which could serve as evidence for region-specific neuroplasticity. Aftereffects of tACS on the motor system remain unknown. Objective: To find evidence for aftereffects in short EEG segments following tACS to two critical nodes of the motor network, namely, left motor cortex (lMC) and right cerebellum (rCB). We hypothesized that aftereffects of lMC will be stronger in and around lMC compared to both active stimulation of rCB, as well as inactive (sham) control conditions. Methods: To this end, we employed multivariate pattern analysis (MVPA), and trained a classifier to distinguish between EEG signals following each of the three stimulation protocols. This method accounts for the multitude facets of the EEG signal and thus is more sensitive to subtle modulation of the EEG signal. Results: EEG signals in both theta (θ, 4-8Hz) and alpha (α, 8-13Hz) were better classified to lMC-tACS compared to rCB-tACS/sham, in and around lMC-tACS stimulation locations (electrodes FC3 and CP3). This effect was associated with a decrease in power following tACS. Source reconstruction revealed significant differences in premotor cortex but not in primary motor cortex as the computational model suggested. Correlation between classification accuracies in θ and α in lMC-tACS was stronger compared to rCB-tACS/sham, suggesting cross-frequency effects of tACS. Nonetheless, θ/α phase-coupling did not differ between stimulation protocols. Conclusions: Successful classification of EEG signals to left motor cortex using MVPA revealed focal tACS aftereffects on the motor cortex, indicative of region-specific neuroplasticity.


Sign in / Sign up

Export Citation Format

Share Document