Combining ensemble empirical mode decomposition with spectrum subtraction technique for heart rate monitoring using wrist-type photoplethysmography

2015 ◽  
Vol 21 ◽  
pp. 119-125 ◽  
Author(s):  
Yangsong Zhang ◽  
Benyuan Liu ◽  
Zhilin Zhang
Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3238
Author(s):  
Ruisheng Lei ◽  
Bingo Wing-Kuen Ling ◽  
Peihua Feng ◽  
Jinrong Chen

This paper proposes a framework combining the complementary ensemble empirical mode decomposition with both the independent component analysis and the non-negative matrix factorization for estimating both the heart rate and the respiratory rate from the photoplethysmography (PPG) signal. After performing the complementary ensemble empirical mode decomposition on the PPG signal, a finite number of intrinsic mode functions are obtained. Then, these intrinsic mode functions are divided into two groups to perform the further analysis via both the independent component analysis and the non-negative matrix factorization. The surrogate cardiac signal related to the heart activity and another surrogate respiratory signal related to the respiratory activity are reconstructed to estimate the heart rate and the respiratory rate, respectively. Finally, different records of signals acquired from the Medical Information Mart for Intensive Care database downloaded from the Physionet Automated Teller Machine (ATM) data bank are employed for demonstrating the outperformance of our proposed method. The results show that our proposed method outperforms both the digital filtering approach and the conventional empirical mode decomposition based methods in terms of reconstructing both the surrogate cardiac signal and the respiratory signal from the PPG signal as well as both achieving the higher accuracy and the higher reliability for estimating both the heart rate and the respiratory rate.


2019 ◽  
Vol 5 (1) ◽  
pp. 381-383 ◽  
Author(s):  
Patricio Fuentealba ◽  
Alfredo Illanes ◽  
Frank Ortmeier

AbstractThis paper focuses on studying the time-variant dynamics involved in the foetal heart rate (FHR) response resulting from the autonomic nervous system modulation. It provides a comprehensive analysis of such dynamics by relating the spectral information involved in the FHR signal with foetal physiological characteristics. This approach is based on two signal processing methods: the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and time-varying autoregressive (TV-AR) modelling. First, the CEEMDAN allows to decompose the signal into intrinsic mode functions (IMFs). Then, the TV-AR modelling allows to analyse their spectral dynamics. Results reveal that the IMFs can involve significant spectral information (p -value < 0.05) that can help to assess the foetal condition.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1184
Author(s):  
Iau-Quen Chung ◽  
Jen-Te Yu ◽  
Wei-Chi Hu

Cardiopulmonary monitoring is important and useful for diagnosing and managing multiple conditions, such as stress and sleep disorders. Wearable ambulatory systems can provide continuous, comfortable, and inexpensive means for monitoring; it always has been a research subject in recent years. Being simple and cost-effective, electrocardiogram-based commercial products can be found in the market that provides cardiac diagnostic information for assessment, including heart rate measurement and atrial fibrillation identification. Based on a data-driven and self-adaptive approach, this study aims to estimate heart rate and respiratory rate simultaneously from one lead electrocardiogram signal. In contrast to ensemble empirical mode decomposition with principle component analysis, performed in the time domain, our method uses spectral data fusion, together with intrinsic mode functions using ensemble empirical mode decomposition obtains a more accurate heart rate and respiratory rate. Equipped with a rule-based selection of defined frequency levels for respiratory rate (RR) estimation, the proposed method obtains (0.92, 1.32) beat per minute for the heart rate and (2.20, 2.92) breath per minute for the respiratory rate as their mean absolute error and root mean square error, respectively outperforming other existing methods.


Sign in / Sign up

Export Citation Format

Share Document