illumination variation
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 66)

H-INDEX

12
(FIVE YEARS 5)

Object detection (OD) within a video is one of the relevant and critical research areas in the computer vision field. Due to the widespread of Artificial Intelligence, the basic principle in real life nowadays and its exponential growth predicted in the epochs to come, it will transmute the public. Object Detection has been extensively implemented in several areas, including human-machine Interaction, autonomous vehicles, security with video surveillance, and various fields that will be mentioned further. However, this augmentation of OD tackles different challenges such as occlusion, illumination variation, object motion, without ignoring the real-time aspect that can be quite problematic. This paper also includes some methods of application to take into account these issues. These techniques are divided into five subcategories: Point Detection, segmentation, supervised classifier, optical flow, a background modeling. This survey decorticates various methods and techniques used in object detection, as well as application domains and the problems faced. Our study discusses the cruciality of deep learning algorithms and their efficiency on future improvement in object detection topics within video sequences.


Face Recognition is an efficient technique and one of the most liked biometric software application for the identification and verification of specific individual in a digital image by analysing and comparing patterns. This paper presents a survey on well-known techniques of face recognition. The primary goal of this review is to observe the performance of different face recognition algorithms such as SVM (Support Vector Machine), CNN (Convolutional Neural Network), Eigenface based algorithm, Gabor Wavelet, PCA (Principle Component Analysis) and HMM (Hidden Markov Model). It presents comparative analysis about the efficiency of each algorithm. This paper also figure out about various face recognition applications used in real world and face recognition challenges like Illumination Variation, Pose Variation, Occlusion, Expressions Variation, Low Resolution and Ageing in brief. Another interesting component covered in this paper is review of datasets available for face recognition. So, must needed survey of many recently introduced face recognition aspects and algorithms are presented.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 194
Author(s):  
Hexuan Li ◽  
Kanuric Tarik ◽  
Sadegh Arefnezhad ◽  
Zoltan Ferenc Magosi ◽  
Christoph Wellershaus ◽  
...  

With the development of autonomous driving technology, the requirements for machine perception have increased significantly. In particular, camera-based lane detection plays an essential role in autonomous vehicle trajectory planning. However, lane detection is subject to high complexity, and it is sensitive to illumination variation, appearance, and age of lane marking. In addition, the sheer infinite number of test cases for highly automated vehicles requires an increasing portion of test and validation to be performed in simulation and X-in-the-loop testing. To model the complexity of camera-based lane detection, physical models are often used, which consider the optical properties of the imager as well as image processing itself. This complexity results in high efforts for the simulation in terms of modelling as well as computational costs. This paper presents a Phenomenological Lane Detection Model (PLDM) to simulate camera performance. The innovation of the approach is the modelling technique using Multi-Layer Perceptron (MLP), which is a class of Neural Network (NN). In order to prepare input data for our neural network model, massive driving tests have been performed on the M86 highway road in Hungary. The model’s inputs include vehicle dynamics signals (such as speed and acceleration, etc.). In addition, the difference between the reference output from the digital-twin map of the highway and camera lane detection results is considered as the target of the NN. The network consists of four hidden layers, and scaled conjugate gradient backpropagation is used for training the network. The results demonstrate that PLDM can sufficiently replicate camera detection performance in the simulation. The modelling approach improves the realism of camera sensor simulation as well as computational effort for X-in-the-loop applications and thereby supports safety validation of camera-based functionality in automated driving, which decreases the energy consumption of vehicles.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7667
Author(s):  
Javier Maldonado-Romo ◽  
Mario Aldape-Pérez ◽  
Alejandro Rodríguez-Molina

Increasingly, robotic systems require a level of perception of the scenario to interact in real-time, but they also require specialized equipment such as sensors to reach high performance standards adequately. Therefore, it is essential to explore alternatives to reduce the costs for these systems. For example, a common problem attempted by intelligent robotic systems is path planning. This problem contains different subsystems such as perception, location, control, and planning, and demands a quick response time. Consequently, the design of the solutions is limited and requires specialized elements, increasing the cost and time development. Secondly, virtual reality is employed to train and evaluate algorithms, generating virtual data. For this reason, the virtual dataset can be connected with the authentic world through Generative Adversarial Networks (GANs), reducing time development and employing limited samples of the physical world. To describe the performance, metadata information details the properties of the agents in an environment. The metadata approach is tested with an augmented reality system and a micro aerial vehicle (MAV), where both systems are executed in an authentic environment and implemented in embedded devices. This development helps to guide alternatives to reduce resources and costs, but external factors limit these implementations, such as the illumination variation, because the system depends on only a conventional camera.


Author(s):  
M. ShalimaSulthana ◽  
C. NagaRaju

During the previous few centuries, facial recognition systems have become a popular research topic. On account of its extraordinary success and vast social applications; it has attracted significant study attention from a wide range of disciplines in the last five years - including “computer-vision”, “artificial-intelligence”, and “machine-learning”. As with most face recognition systems, the fundamental goal involves recognizing a person's identity by means of images, video, data streams, and context information. As a result of our research; we've outlined some of the most important applications, difficulties, and trends in scientific and social domains. This research, the primary goal is to summarize modern facial recognition algorithms and to gain a general perceptive of how these techniques act on diverse datasets. Aside from that, we also explore some significant problems like illumination variation, position, aging, occlusion, cosmetics, scale, and background are some of the primary challenges we examine. In addition to traditional face recognition approaches, the most recent research topics such as sparse models, deep learning, and fuzzy set theory are examined in depth. There's also a quick discussion of basic techniques, as well as a more in-depth. As a final point, this research explores the future of facial recognition technologies and their possible importance in the emerging digital society.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bangchao Liu ◽  
Youping Chen ◽  
Jingming Xie ◽  
Bing Chen

Online defect detection system is a necessary technical measure and important means for large-scale industrial printing production. It is effective to reduce artificial detection fatigue and improve the accuracy and stability of industry printing line. However, the existing defect detection algorithms are mainly developed based on high-quality database and it is difficult to detect the defects on low-quality printing images. In this paper, we propose a new multi-edge feature fusion algorithm which is effective in solving this problem. Firstly, according to the characteristics of sheet-fed printing system, a new printing image database is established; compared with the existing databases, it has larger translation, deformation, and uneven illumination variation. These interferences make defect detection become more challenging. Then, SIFT feature is employed to register the database. In order to reduce the number of false detections which are caused by the position, deformation, and brightness deviation between the detected image and reference image, multi-edge feature fusion algorithm is proposed to overcome the effects of these disturbances. Lastly, the experimental results of mAP (92.65%) and recall (96.29%) verify the effectiveness of the proposed method which can effectively detect defects in low-quality printing database. The proposed research results can improve the adaptability of visual inspection system on a variety of different printing platforms. It is better to control the printing process and further reduce the number of operators.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Danyu Sun ◽  
Xixuan Zhao ◽  
Jiangming Kan

Color descriptors, which involve the extraction of color information that is robust to illumination variation, are indispensable for accessing reliable visual information as illumination variation is inevitable in many practical cases. There has been many color descriptors proposed in literature, but the performance of different color descriptors in different scenes under illumination variation and the influence of the surface characteristics have not been investigated. In this paper, we first systematically introduced the theoretical basis of color descriptors, categorized the existing color descriptors according to the theoretical basis, and then compared the performance of different color descriptors utilized for image recognition and image retrieval tasks on both the indoor and outdoor image datasets. We adopted the recognition rate and normalized average rank as the evaluation criteria to measure the performance of color descriptors. Experiment results show that the color moment invariants (CMI) provide the optimal balance between the performance and dimensions in most tests, and color descriptors derived from physical reflectance models are more suitable for object recognition and image retrieval. We also concluded the best color descriptors for each kind of scene and surface characteristics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Prabhakar Maheswari ◽  
Purushothaman Raja ◽  
Orly Enrique Apolo-Apolo ◽  
Manuel Pérez-Ruiz

Smart farming employs intelligent systems for every domain of agriculture to obtain sustainable economic growth with the available resources using advanced technologies. Deep Learning (DL) is a sophisticated artificial neural network architecture that provides state-of-the-art results in smart farming applications. One of the main tasks in this domain is yield estimation. Manual yield estimation undergoes many hurdles such as labor-intensive, time-consuming, imprecise results, etc. These issues motivate the development of an intelligent fruit yield estimation system that offers more benefits to the farmers in deciding harvesting, marketing, etc. Semantic segmentation combined with DL adds promising results in fruit detection and localization by performing pixel-based prediction. This paper reviews the different literature employing various techniques for fruit yield estimation using DL-based semantic segmentation architectures. It also discusses the challenging issues that occur during intelligent fruit yield estimation such as sampling, collection, annotation and data augmentation, fruit detection, and counting. Results show that the fruit yield estimation employing DL-based semantic segmentation techniques yields better performance than earlier techniques because of human cognition incorporated into the architecture. Future directions like customization of DL architecture for smart-phone applications to predict the yield, development of more comprehensive model encompassing challenging situations like occlusion, overlapping and illumination variation, etc., were also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4030
Author(s):  
Wenhua Guo ◽  
Jiabao Gao ◽  
Yanbin Tian ◽  
Fan Yu ◽  
Zuren Feng

Object tracking is one of the most challenging problems in the field of computer vision. In challenging object tracking scenarios such as illumination variation, occlusion, motion blur and fast motion, existing algorithms can present decreased performances. To make better use of the various features of the image, we propose an object tracking method based on the self-adaptive feature selection (SAFS) algorithm, which can select the most distinguishable feature sub-template to guide the tracking task. The similarity of each feature sub-template can be calculated by the histogram of the features. Then, the distinguishability of the feature sub-template can be measured by their similarity matrix based on the maximum a posteriori (MAP). The selection task of the feature sub-template is transformed into the classification task between feature vectors by the above process and adopt modified Jeffreys’ entropy as the discriminant metric for classification, which can complete the update of the sub-template. Experiments with the eight video sequences in the Visual Tracker Benchmark dataset evaluate the comprehensive performance of SAFS and compare them with five baselines. Experimental results demonstrate that SAFS can overcome the difficulties caused by scene changes and achieve robust object tracking.


Author(s):  
Hung Phuoc Truong ◽  
Thanh Phuong Nguyen ◽  
Yong-Guk Kim

AbstractWe present a novel framework for efficient and robust facial feature representation based upon Local Binary Pattern (LBP), called Weighted Statistical Binary Pattern, wherein the descriptors utilize the straight-line topology along with different directions. The input image is initially divided into mean and variance moments. A new variance moment, which contains distinctive facial features, is prepared by extracting root k-th. Then, when Sign and Magnitude components along four different directions using the mean moment are constructed, a weighting approach according to the new variance is applied to each component. Finally, the weighted histograms of Sign and Magnitude components are concatenated to build a novel histogram of Complementary LBP along with different directions. A comprehensive evaluation using six public face datasets suggests that the present framework outperforms the state-of-the-art methods and achieves 98.51% for ORL, 98.72% for YALE, 98.83% for Caltech, 99.52% for AR, 94.78% for FERET, and 99.07% for KDEF in terms of accuracy, respectively. The influence of color spaces and the issue of degraded images are also analyzed with our descriptors. Such a result with theoretical underpinning confirms that our descriptors are robust against noise, illumination variation, diverse facial expressions, and head poses.


Sign in / Sign up

Export Citation Format

Share Document