Feature subset and time segment selection for the classification of EEG data based motor imagery

2020 ◽  
Vol 61 ◽  
pp. 102026
Author(s):  
Jie Wang ◽  
Zuren Feng ◽  
Xiaodong Ren ◽  
Na Lu ◽  
Jing Luo ◽  
...  
2017 ◽  
Vol 44 (9) ◽  
pp. 887-892
Author(s):  
David Lee ◽  
Hee Jae Lee ◽  
Snag-Hoon Park ◽  
Sang-Goog Lee

2021 ◽  
Author(s):  
Md Ochiuddin Miah ◽  
Rafsanjani Muhammod ◽  
Khondaker Abdullah Al Mamun ◽  
Dewan Md. Farid ◽  
Shiu Kumar ◽  
...  

Background: The classification of motor imagery electroencephalogram (MI-EEG) is a pivotal task in the biosignal classification process in brain-computer interface (BCI) applications. Currently, this bio-engineering-based technology is being employed by researchers in various fields to develop cutting-edge applications. The classification of real-time MI-EEG signals is the most challenging task in these applications. The prediction performance of the existing classification methods is still limited due to the high dimensionality and dynamic behaviors of the real-time EEG data. Proposed Method: To enhance the classification performance of real-time BCI applications, this paper presents a new clustering-based ensemble technique called CluSem to mitigate this problem. We also develop a new brain game called CluGame using this method to evaluate the classification performance of real-time motor imagery movements. In this game, real-time EEG signal classification and prediction tabulation through animated balls are controlled via threads. By playing this game, users can control the movements of the balls via the brain signals of motor imagery movements without using any traditional input devices. Results: Our results demonstrate that CluSem is able to improve the classification accuracy between 5% and 15% compared to the existing methods on our collected as well as the publicly available EEG datasets. The source codes used to implement CluSem and CluGame are publicly available at https://github.com/MdOchiuddinMiah/MI-BCI_ML.


2021 ◽  
Vol 11 (21) ◽  
pp. 9948
Author(s):  
Amira Echtioui ◽  
Ayoub Mlaouah ◽  
Wassim Zouch ◽  
Mohamed Ghorbel ◽  
Chokri Mhiri ◽  
...  

Recently, Electroencephalography (EEG) motor imagery (MI) signals have received increasing attention because it became possible to use these signals to encode a person’s intention to perform an action. Researchers have used MI signals to help people with partial or total paralysis, control devices such as exoskeletons, wheelchairs, prostheses, and even independent driving. Therefore, classifying the motor imagery tasks of these signals is important for a Brain-Computer Interface (BCI) system. Classifying the MI tasks from EEG signals is difficult to offer a good decoder due to the dynamic nature of the signal, its low signal-to-noise ratio, complexity, and dependence on the sensor positions. In this paper, we investigate five multilayer methods for classifying MI tasks: proposed methods based on Artificial Neural Network, Convolutional Neural Network 1 (CNN1), CNN2, CNN1 with CNN2 merged, and the modified CNN1 with CNN2 merged. These proposed methods use different spatial and temporal characteristics extracted from raw EEG data. We demonstrate that our proposed CNN1-based method outperforms state-of-the-art machine/deep learning techniques for EEG classification by an accuracy value of 68.77% and use spatial and frequency characteristics on the BCI Competition IV-2a dataset, which includes nine subjects performing four MI tasks (left/right hand, feet, and tongue). The experimental results demonstrate the feasibility of this proposed method for the classification of MI-EEG signals and can be applied successfully to BCI systems where the amount of data is large due to daily recording.


2011 ◽  
Vol 304 ◽  
pp. 274-278
Author(s):  
Xiao Dan

Subjects are identified by classifying motor imagery EEG signal. Energy entropy was used to preprocess motor imagery EEG data, and the Fisher class separability criterion was applied to extract features. Finally, classification of of extracted features was performed by a Linear discrimination analysis method. Four types motor imagery EEG of three subjects was classified respectively. The results showed that the average classification accuracy achieved over 85%, and the highest was 88.7% on tongue movement imagery EEG


Sign in / Sign up

Export Citation Format

Share Document