motor imagery
Recently Published Documents


TOTAL DOCUMENTS

3997
(FIVE YEARS 1480)

H-INDEX

105
(FIVE YEARS 16)

2022 ◽  
Vol 65 (4) ◽  
pp. 101541
Author(s):  
Dylan Rannaud Monany ◽  
Charalambos Papaxanthis ◽  
Aymeric Guillot ◽  
Florent Lebon

2022 ◽  
Vol 15 ◽  
Author(s):  
Franck Di Rienzo ◽  
Pierric Joassy ◽  
Thiago Ferreira Dias Kanthack ◽  
François Moncel ◽  
Quentin Mercier ◽  
...  

Motor Imagery (MI) reproduces cognitive operations associated with the actual motor preparation and execution. Postural recordings during MI reflect somatic motor commands targeting peripheral effectors involved in balance control. However, how these relate to the actual motor expertise and may vary along with the MI modality remains debated. In the present experiment, two groups of expert and non-expert gymnasts underwent stabilometric assessments while performing physically and mentally a balance skill. We implemented psychometric measures of MI ability, while stabilometric variables were calculated from the center of pressure (COP) oscillations. Psychometric evaluations revealed greater MI ability in experts, specifically for the visual modality. Experts exhibited reduced surface COP oscillations in the antero-posterior axis compared to non-experts during the balance skill (14.90%, 95% CI 34.48–4.68, p < 0.05). Experts further exhibited reduced length of COP displacement in the antero-posterior axis and as a function of the displacement area during visual and kinesthetic MI compared to the control condition (20.51%, 95% CI 0.99–40.03 and 21.85%, 95% CI 2.33–41.37, respectively, both p < 0.05). Predictive relationships were found between the stabilometric correlates of visual MI and physical practice of the balance skill, as well as between the stabilometric correlates of kinesthetic MI and the training experience in experts. Present results provide original stabilometric insights into the relationships between MI and expertise level. While data support the incomplete inhibition of postural commands during MI, whether postural responses during MI of various modalities mirror the level of motor expertise remains unclear.


Author(s):  
Yuan Liu ◽  
Zhuang Wang ◽  
Shuaifei Huang ◽  
Wenjie Wang ◽  
Dong Ming

Abstract Objective. Supernumerary Robotic Limbs (SRL) are body augmentation robotic devices by adding extra limbs or fingers to the human body different from the traditional wearable robotic devices such as prosthesis and exoskeleton. We proposed a novel MI (Motor imagery)-based BCI paradigm based on the sixth-finger which imagines controlling the extra finger movements. The goal of this work is to investigate the EEG characteristics and the application potential of MI-based BCI systems based on the new imagination paradigm (the sixth finger MI). Approach. 14 subjects participated in the experiment involving the sixth finger MI tasks and rest state. Event-related spectral perturbation (ERSP) was adopted to analyse EEG spatial features and key-channel time-frequency features. Common spatial patterns (CSP) were used for feature extraction and classification was implemented by support vector machine (SVM). A genetic algorithm (GA) was used to select combinations of EEG channels that maximized classification accuracy and verified EEG patterns based on the sixth finger MI. And we conducted a longitudinal 4-week EEG control experiment based on the new paradigm. Main results. ERD (event-related desynchronization) was found in the supplementary motor area (SMA) and primary motor area (M1) with a faint contralateral dominance. Unlike traditional MI based on the human hand, ERD was also found in frontal lobe. GA results showed that the distribution of the optimal 8-channel is similar to EEG topographical distributions, nearing parietal and frontal lobe. And the classification accuracy based on the optimal 8-channel (the highest accuracy of 80% and mean accuracy of 70%) was significantly better than that based on the random 8-channel (p<0.01). Significance. This work provided a new paradigm for MI-based MI system and verified its feasibility, widened the control bandwidth of the BCI system.


2022 ◽  
Author(s):  
Long Li ◽  
Yanlong Zhang ◽  
Liming Fan ◽  
Jie Zhao ◽  
Jing Guo ◽  
...  

Abstract Background: Auditory feedback is one of the most important feedback in cognitive process. It plays an important guiding role in cognitive motor process. However, previous studies on auditory stimuli mainly focused on the cognitive effects of auditory stimuli on cortex, while the role of auditory feedback stimuli in motor imagery tasks is still unclear.Methods: 18 healthy subjects were recruited to complete the motor imagination task stimulated by meaningful words and meaningless words. In order to explore the role of auditory stimuli in motor imagination tasks, we studied EEG power spectrum, frontal parietal mismatch negativity (MMN) and inter test phase-locked consistency (ITPC). one-way Analysis of Variance (ANOVA) and Least Significant Difference (LSD) correction were used to test the differences between the two experimental groups and the differences of different bands in each experimental group.Results: EEG power spectrum analysis showed that the activity of contralateral motor cortex was significantly increased under the stimulation of meaningful words, and the amplitude of mismatch negative wave was also significantly increased. ITPC is mainly concentrated in μ, α and γ bands in the process of motor imagery task guided by the auditory stimulus of meaningful words, while it is mainly concentrated in the β band under the meaningless words stimulation.Conclusions: This results may be due to the influence of auditory cognitive process on motor imagery. We speculate that there may be a more complex mechanism for the effect of auditory stimulation on the inter test phase lock consistency. When the stimulus sound has the corresponding meaning to the motor action, the parietal motor cortex may be more affected by the prefrontal cognitive cortex, thus changing its normal response mode. This mode change is caused by the joint action of motor imagination, cognitive and auditory stimuli. This study provides a new insight into the neural mechanism of motor imagery task guided by auditory stimuli, and provides more information on the activity characteristics of the brain network in motor imagery task by cognitive auditory feedback.


Sign in / Sign up

Export Citation Format

Share Document