A two-dimensional sideways problem with random discrete data

2021 ◽  
Vol 86 ◽  
pp. 16-32
Author(s):  
Dang Duc Trong ◽  
Tran Quoc Viet ◽  
Vo Dang Khoa ◽  
Nguyen Thi Hong Nhung
Author(s):  
Tsunehito Higashi ◽  
Yasuhiro Shimada ◽  
Hideyuki Shimada ◽  
Mitsuru Ohkura
Keyword(s):  

Author(s):  
Tanzhe Tang ◽  
Amineh Ghorbani ◽  
Flaminio Squazzoni ◽  
Caspar G. Chorus

AbstractThe growing polarization of our societies and economies has been extensively studied in various disciplines and is subject to public controversy. Yet, measuring polarization is hampered by the discrepancy between how polarization is conceptualized and measured. For instance, the notion of group, especially groups that are identified based on similarities between individuals, is key to conceptualizing polarization but is usually neglected when measuring polarization. To address the issue, this paper presents a new polarization measurement based on a grouping method called “Equal Size Binary Grouping” (ESBG) for both uni- and multi-dimensional discrete data, which satisfies a range of desired properties. Inspired by techniques of clustering, ESBG divides the population into two groups of equal sizes based on similarities between individuals, while overcoming certain theoretical and practical problems afflicting other grouping methods, such as discontinuity and contradiction of reasoning. Our new polarization measurement and the grouping method are illustrated by applying them to a two-dimensional synthetic data set. By means of a so-called “squeezing-and-moving” framework, we show that our measurement is closely related to bipolarization and could help stimulate further empirical research.


2007 ◽  
Vol 44 (02) ◽  
pp. 393-408 ◽  
Author(s):  
Allan Sly

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Sign in / Sign up

Export Citation Format

Share Document