On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test

2017 ◽  
Vol 99 ◽  
pp. 183-189 ◽  
Author(s):  
Qiang Yuan ◽  
Dajun Zhou ◽  
Kamal H. Khayat ◽  
Dimitri Feys ◽  
Caijun Shi
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Qiang Yuan ◽  
Xin Lu ◽  
Kamal H. Khayat ◽  
Dimitri Feys ◽  
Caijun Shi

Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g. by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35 to 55 % by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m²/l, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau-Ovarlez-Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1551 ◽  
Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g., by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35% to 55% by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m²/L, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau–Ovarlez–Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


2012 ◽  
Vol 26 (13) ◽  
pp. 1250079 ◽  
Author(s):  
DE WANG ◽  
RONG SHEN ◽  
SHIQIANG WEI ◽  
KUNQUAN LU

A new type of electrorheological (ER) fluid consisting of lanthanum titanate (LTO) nanoparticles is developed. The ER fluids were prepared by suspending LTO powder in silicone oil and the particles were fabricated by wet chemical method. This ER fluid shows excellent ER properties: The static yield stress reaches over 150 kPa under 5 kV/mm with linear dependence on the applied DC electric field, and the current density is below 10 μA/cm2. In order to investigate the affect factor on the ER behavior, the LTO powder were heated under different temperatures. The ER performances of two particles treated under different temperatures were compared and the composition changes for those particles were analyzed with TG-FTIR technique. It was found that the static yield stress of the suspensions fell from over 150 kPa to about 40 kPa and the current densities decreased prominently as the rise of the heating temperature. TG-FTIR analysis indicated that polar groups remained in the particles such as alkyl group, hydroxyl group and carbonyl group etc., contribute to the ER effect significantly. The experimental results are helpful to understand the mechanism of the high ER effect and to synthesize better ER materials.


1993 ◽  
Vol 74 (2) ◽  
pp. 938-941 ◽  
Author(s):  
Montonori Ota ◽  
Tetsuo Miyamoto

Sign in / Sign up

Export Citation Format

Share Document