fresh concrete
Recently Published Documents


TOTAL DOCUMENTS

889
(FIVE YEARS 195)

H-INDEX

31
(FIVE YEARS 8)

2022 ◽  
Vol 152 ◽  
pp. 106679
Author(s):  
Zhisong Xu ◽  
Zhuguo Li ◽  
Fei Jiang

Author(s):  
Barkha Verma

Abstract: Aggregates provide volume at low cost, comprising 66% to 78% of the concrete. With increasing concern over the excessive exploitation of natural and quality aggregates, the aggregate produced from industrial wastes and agricultural wastes is the viable new source for building material. This study was carried out to determine the possibilities of using coconut shells as aggregate in concrete. Utilizing coconut shells as aggregate in concrete production not only solves the problem of disposing of this solid waste but also helps conserve natural resources. In this paper, the physical properties of crushed coconut shell aggregate were presented. The fresh concrete properties such as the density and slump and 28 days compressive strength of lightweight concrete made with coconut shell as coarse aggregate were also presented. The findings indicate that water absorption of the coconut shell aggregate was high about 24% but crushing value and impact value were comparable to that of other lightweight aggregates. The average fresh concrete density and 28days cube compressive strength of the concrete using coconut shell aggregate 1975kg/m3 and 19.1 N/mm2 respectively. It is concluded that crushed coconut shell is suitable when it is used as a substitute for conventional aggregates in lightweight concrete production. Keywords: Coarse Aggregate, Cement, Concrete, Fly Ash, Coconut shell Aggregate, Water, Compressive Strength, Workability, Fine Aggregate.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Weishuo Yan ◽  
Wei Cui ◽  
Lan Qi
Keyword(s):  

2022 ◽  
Vol 1048 ◽  
pp. 366-375
Author(s):  
Pavan Chandrasekar ◽  
Anjala Nourin ◽  
Addepalli Sri Naga Bhushana Aravind Gupta ◽  
Bavineni Venkata Jyoshna ◽  
Dhanya Sathyan

Abstract: Rheology is the science that concerns the flow of liquids, and the distortion of solids under an applied force. The study of the rheology of concrete determines the properties of fresh concrete. The rheological parameters are affected by temperature, stress conditions and several other factors. The main intention of this research is to model the rheological parameters of the fly ash incorporated cement with various types of superplasticizers exposed under different temperatures using an Artificial Neural Network. Test data were generated by performing rheological tests on cement paste at three distinct temperatures (15, 27, 35°C). Mixes were prepared using OPC, fly ash (15, 25, 35%) and superplasticizers of four different families. By conducting experiments, 252 data have been generated by modifying the combination of fly-ash, superplasticizer, and test temperature. Among the 252 data, 80% has been utilized for training and 20% is utilized for predicting the model’s accuracy. The input layer of the model consists of test temperature, the amount of fly ash replaced, cement and water content, and four different groups of superplasticizers. The cement paste’s yield stress was the output parameter of the model. The model generated data has been compared with the experimentally generated data to determine the accuracy of the model.Keywords: Rheology, Fly Ash, Superplasticizer, Temperature, ANN


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 128
Author(s):  
Kateřina Nováková ◽  
Kristýna Carrera ◽  
Petr Konrád ◽  
Karel Künzel ◽  
Václav Papež ◽  
...  

The efficiency of fibre reinforcement in concrete can be drastically increased by orienting the fibres using a magnetic field. This orientation occurs immediately after pouring fresh concrete when the fibres can still move. The technique is most relevant for manufacturing prefabricated elements such as beams or columns. However, the parameters of such a field are not immediately apparent, as they depend on the specific fibre reaction to the magnetic field. In this study, a numerical model was created in ANSYS Maxwell to examine the mechanical torque acting on fibres placed in a magnetic field with varying parameters. The model consists of a single fibre placed between two Helmholtz coils. The simulations were verified with an experimental setup as well as theoretical relationships. Ten different fibre types, both straight and hook-ended, were examined. The developed model can be successfully used to study the behaviour of fibres in a magnetic field. The fibre size plays the most important role together with the magnetic saturation of the fibre material. Multiple fibres show significant interactions.


Sign in / Sign up

Export Citation Format

Share Document