Octahedral NiFe2O4 for high-performance gas sensor with low working temperature

2018 ◽  
Vol 44 (2) ◽  
pp. 2620-2625 ◽  
Author(s):  
Yonghua Ma ◽  
Yan Lu ◽  
Huitian Gou ◽  
Wanxiang Zhang ◽  
Shaohui Yan ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 726 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Jae-Hun Kim ◽  
Sang Kim

High-performance hydrogen sensors are important in many industries to effectively address safety concerns related to the production, delivering, storage and use of H2 gas. Herein, we present a highly sensitive hydrogen gas sensor based on SnO2-loaded ZnO nanofibers (NFs). The xSnO2-loaded (x = 0.05, 0.1 and 0.15) ZnO NFs were fabricated using an electrospinning technique followed by calcination at high temperature. Microscopic analyses demonstrated the formation of NFs with expected morphology and chemical composition. Hydrogen sensing studies were performed at various temperatures and the optimal working temperature was selected as 300 °C. The optimal gas sensor (0.1 SnO2 loaded ZnO NFs) not only showed a high response to 50 ppb hydrogen gas, but also showed an excellent selectivity to hydrogen gas. The excellent performance of the gas sensor to hydrogen gas was mainly related to the formation of SnO2-ZnO heterojunctions and the metallization effect of ZnO.


2016 ◽  
Vol 4 (4) ◽  
pp. 1390-1398 ◽  
Author(s):  
Diyu Fu ◽  
Chunling Zhu ◽  
Xitian Zhang ◽  
Chunyan Li ◽  
Yujin Chen

Net-like SnO2/ZnO heteronanostructures with a porous feature and heterojunctions at the interfaces were successfully designed and fabricated by a facile method. Importantly, they could detect 10 ppb H2S even at a working temperature of 100 °C.


Author(s):  
Xu Zhou ◽  
Zi Wang ◽  
Ruxin Song ◽  
Yadan Zhang ◽  
Lunan Zhu ◽  
...  

A high performance organic ambipolar transistor-based gas sensor was constructed. It demonstrates dual response features and good selectivity.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5618-5628
Author(s):  
Wenkai Jiang ◽  
Xinwei Chen ◽  
Tao Wang ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a metal phthalocyanine/graphene quantum dot hybrid material was fabricated for NO2 detection at room-temperature.


2019 ◽  
Vol 19 (24) ◽  
pp. 11767-11774 ◽  
Author(s):  
Neha Sakhuja ◽  
Ravindra Kumar Jha ◽  
Navakanta Bhat

2021 ◽  
Vol 13 (4) ◽  
pp. 724-733
Author(s):  
Ahmad Umar ◽  
Ahmed A. Ibrahim ◽  
Rajesh Kumar ◽  
Hassan Algadi ◽  
Hasan Albargi ◽  
...  

In this paper, star-fruit-shaped CuO microstructures were hydrothermally synthesized and subsequently characterized through different techniques to understand morphological, compositional, structural, crystal, optical and vibrational properties. The formation of star-fruit-shaped structures along with some polygonal and spherical nanostructures was confirmed by FESEM analysis. XRD data and Raman spectrum confirmed the monoclinic tenorite crystalline phase of the CuO with crystal size 17.61 nm. Star-fruit-shaped CuO microstructures were examined for ethanol gas sensing behavior at various operating temperatures and concentrations. The gas response of 135% was observed at the optimal temperature of 225 °C. Due to excellent selectivity, stability and re-usability, the as-fabricated sensor based on star-fruit-shaped CuO micro-structures may be explored for future toxic gas sensor applications.


Sign in / Sign up

Export Citation Format

Share Document