Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor

2016 ◽  
Vol 4 (4) ◽  
pp. 1390-1398 ◽  
Author(s):  
Diyu Fu ◽  
Chunling Zhu ◽  
Xitian Zhang ◽  
Chunyan Li ◽  
Yujin Chen

Net-like SnO2/ZnO heteronanostructures with a porous feature and heterojunctions at the interfaces were successfully designed and fabricated by a facile method. Importantly, they could detect 10 ppb H2S even at a working temperature of 100 °C.

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 726 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Jae-Hun Kim ◽  
Sang Kim

High-performance hydrogen sensors are important in many industries to effectively address safety concerns related to the production, delivering, storage and use of H2 gas. Herein, we present a highly sensitive hydrogen gas sensor based on SnO2-loaded ZnO nanofibers (NFs). The xSnO2-loaded (x = 0.05, 0.1 and 0.15) ZnO NFs were fabricated using an electrospinning technique followed by calcination at high temperature. Microscopic analyses demonstrated the formation of NFs with expected morphology and chemical composition. Hydrogen sensing studies were performed at various temperatures and the optimal working temperature was selected as 300 °C. The optimal gas sensor (0.1 SnO2 loaded ZnO NFs) not only showed a high response to 50 ppb hydrogen gas, but also showed an excellent selectivity to hydrogen gas. The excellent performance of the gas sensor to hydrogen gas was mainly related to the formation of SnO2-ZnO heterojunctions and the metallization effect of ZnO.


The Analyst ◽  
2020 ◽  
Vol 145 (24) ◽  
pp. 8059-8067
Author(s):  
Bolong Li ◽  
Xinwei Chen ◽  
Chen Su ◽  
Yutong Han ◽  
Huaizhang Wang ◽  
...  

A high performance gas sensor based on two-dimensional WSe2 nanosheets was fabricated for dimethyl methylphosphonate detection at room-temperature.


2018 ◽  
Vol 44 (2) ◽  
pp. 2620-2625 ◽  
Author(s):  
Yonghua Ma ◽  
Yan Lu ◽  
Huitian Gou ◽  
Wanxiang Zhang ◽  
Shaohui Yan ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 399
Author(s):  
Kee-Ryung Park ◽  
Ryun Na Kim ◽  
Yoseb Song ◽  
Jinhyeong Kwon ◽  
Hyeunseok Choi

Herein, a facile fabrication process of ZnO-ZnFe2O4 hollow nanofibers through one-needle syringe electrospinning and the following calcination process is presented. The various compositions of the ZnO-ZnFe2O4 nanofibers are simply created by controlling the metal precursor ratios of Zn and Fe. Moreover, the different diffusion rates of the metal oxides and metal precursors generate a hollow nanostructure during calcination. The hollow structure of the ZnO-ZnFe2O4 enables an enlarged surface area and increased gas sensing sites. In addition, the interface of ZnO and ZnFe2O4 forms a p-n junction to improve gas response and to lower operation temperature. The optimized ZnO-ZnFe2O4 has shown good H2S gas sensing properties of 84.5 (S = Ra/Rg) at 10 ppm at 250 ∘C with excellent selectivity. This study shows the good potential of p-n junction ZnO-ZnFe2O4 on H2S detection and affords a promising sensor design for a high-performance gas sensor.


2020 ◽  
Author(s):  
jiamu cao ◽  
jing zhou ◽  
jianing shi ◽  
yufeng zhang ◽  
junyu chen ◽  
...  

Abstract Owing to their harmful and polluting the environment, nitrogen oxides and sulfur dioxide are expected to monitor when they are used. However, the widespread use of gas sensing methods presents obstacles in terms of portability or stability. Hence, a better detect way needs to be found urgently. The success of graphene-based gas sensors has stimulated interest in two-dimensional (2D) materials in the gas sensing area. Transition metal dichalcogenides (TMDs), such as MoS2 or WS2, are considered to have the high-performance potential for gas sensors. Unfortunately, when used as a gas sensor, the sensing response of the pristine TMDs is greatly affected by a number of gas molecules that are too weak to be detected. Herein, to evaluate the sensing capability of Al, P, and Fe-doped WS2 to NO, NO2, and SO2, the molecular model of the adsorption systems was constructed, and density functional theory (DFT) was used to calculate the adsorption behavior of these gases. The binding force of all the doped-WS2 to the harmful gas molecules is much stronger than that of the pristine WS2. According to the results of adsorption energy, band structure, and state density, Al-doped WS2 has the potential to be used as NO and SO2 gas sensor, while P-doped WS2 is selective to NO. This work opens up a new reference for choosing appropriate doping types on 2D materials for noxious gas sensing.


Sign in / Sign up

Export Citation Format

Share Document