Two pairs of Lie algebras and the integrable couplings as well as the Hamiltonian structure of the Yang hierarchy

2007 ◽  
Vol 34 (2) ◽  
pp. 490-495 ◽  
Author(s):  
Yufeng Zhang ◽  
Fukui Guo
2009 ◽  
Vol 23 (05) ◽  
pp. 731-739
Author(s):  
YONGQING ZHANG ◽  
YAN LI

A soliton-equation hierarchy from the D. Levi spectral problem is obtained under the framework of zero curvature equation. By employing two various multi-component Lie algebras and the loop algebras, we enlarge the Levi spectral problem and the corresponding time-part isospectral problems so that two different integrable couplings are produced. Using the quadratic-form identity yields the Hamiltonian structure of one of the two integrable couplings.


2010 ◽  
Vol 24 (07) ◽  
pp. 681-694
Author(s):  
LI-LI ZHU ◽  
JUN DU ◽  
XIAO-YAN MA ◽  
SHENG-JU SANG

By considering a discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations are derived. The relation to the Toda type lattice is achieved by variable transformation. With the help of Tu scheme, the Hamiltonian structure of the resulting lattice hierarchy is constructed. The Liouville integrability is then demonstrated. Semi-direct sum of Lie algebras is proposed to construct discrete integrable couplings. As applications, two kinds of discrete integrable couplings of the resulting system are worked out.


2007 ◽  
Vol 21 (01) ◽  
pp. 37-44 ◽  
Author(s):  
YUFENG ZHANG

A new subalgebra of the loop algebra Ã3 is directly constructed and used to build a pair of Lax matrix isospectral problems. The resulting compatibility condition, i.e., zero curvature equation, gives rise to integrable couplings of the dispersive long wave hierarchy, as an application example. Through using a proper isomorphic map between two Lie algebras, two equivalent zero curvature equations are presented from which the Hamiltonian structure of the integrable couplings is obtained by the quadratic-form identity. The proposed method can be applied to the construction of integrable couplings and the corresponding Hamiltonian structures of other existing soliton hierarchies.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Lei Wang ◽  
Ya-Ning Tang

Based on zero curvature equations from semidirect sums of Lie algebras, we construct tri-integrable couplings of the Giachetti-Johnson (GJ) hierarchy of soliton equations and establish Hamiltonian structures of the resulting tri-integrable couplings by the variational identity.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4431-4439
Author(s):  
Xiu-Rong Guo ◽  
Fang-Fang Ma ◽  
Juan Wang

This paper mainly investigates the reductions of an integrable coupling of the Levi hierarchy and an expanding model of the (2+1)-dimensional Davey-Stewartson hierarchy. It is shown that the integrable coupling system of the Levi hierarchy possesses a quasi-Hamiltonian structure under certain constraints. Based on the Lie algebras construct, The type abstraction hierarchy scheme is used to gener?ate the (2+1)-dimensional expanding integrable model of the Davey-Stewartson hierarchy.


2008 ◽  
Vol 38 (2) ◽  
pp. 541-547
Author(s):  
Wang Yan ◽  
Yufeng Zhang

2007 ◽  
Vol 21 (30) ◽  
pp. 2063-2074 ◽  
Author(s):  
YUFENG ZHANG ◽  
Y. C. HON

The extension of a three-dimensional Lie algebra into two higher-dimensional ones is used to deduce two new integrable couplings of the m-AKNS hierarchy. The Hamiltonian structures of the two integrable couplings are obtained, respectively. Specially, the complex Hamiltonian structure of the second integrable couplings is given.


2009 ◽  
Vol 23 (24) ◽  
pp. 4855-4879 ◽  
Author(s):  
HONWAH TAM ◽  
YUFENG ZHANG

An isospectral problem is introduced, a spectral radius of the corresponding spectral matrix is obtained, which enlightens us to set up an isospectral problem whose compatibility condition gives rise to a zero curvature equation in formalism, from which a Lax integrable soliton equation hierarchy with constraints of potential functions is generated along with 5 parameters, whose reduced cases present three integrable systems, i.e., AKNS hierarchy, Levi hierarchy and D-AKNS hierarchy. Enlarging the above Lie algebra into two bigger ones, the two integrable couplings of the hierarchy are derived, one of them has Hamiltonian structure by employing the quadratic-form identity or variational identity. The corresponding integrable couplings of the reduced systems are obtained, respectively. Finally, as comparing study for generating expanding integrable systems, a Lie algebra of antisymmetric matrices and its corresponding loop algebra are constructed, from which a great number of enlarging integrable systems could be generated, especially their Hamiltonian structure could be computed by the trace identity.


2007 ◽  
Vol 21 (10) ◽  
pp. 595-602 ◽  
Author(s):  
ZHU LI ◽  
YUJUAN ZHANG ◽  
HUANHE DONG

Integrable couplings of the TC hierarchy is obtained by use of the new subalgebra of the loop algebra Ã3, then the Hamiltonian structure of the above system is given by the quadratic-form identity.


Sign in / Sign up

Export Citation Format

Share Document