Power-law statistics from nonlinear stochastic differential equations driven by Lévy stable noise

2015 ◽  
Vol 81 ◽  
pp. 432-442 ◽  
Author(s):  
Rytis Kazakevičius ◽  
Julius Ruseckas
2012 ◽  
Author(s):  
Bo Jiang ◽  
Roger Brockett ◽  
Weibo Gong ◽  
Don Towsley

2019 ◽  
Vol 25 ◽  
pp. 71
Author(s):  
Viorel Barbu

One introduces a new concept of generalized solution for nonlinear infinite dimensional stochastic differential equations of subgradient type driven by linear multiplicative Wiener processes. This is defined as solution of a stochastic convex optimization problem derived from the Brezis-Ekeland variational principle. Under specific conditions on nonlinearity, one proves the existence and uniqueness of a variational solution which is also a strong solution in some significant situations. Applications to the existence of stochastic total variational flow and to stochastic parabolic equations with mild nonlinearity are given.


Sign in / Sign up

Export Citation Format

Share Document