Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions

2020 ◽  
Vol 132 ◽  
pp. 109551 ◽  
Author(s):  
Ashish Kumar ◽  
Dwijendra N. Pandey
Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 360 ◽  
Author(s):  
Dumitru Baleanu ◽  
Arran Fernandez ◽  
Ali Akgül

The Caputo fractional derivative has been one of the most useful operators for modelling non-local behaviours by fractional differential equations. It is defined, for a differentiable function f ( t ) , by a fractional integral operator applied to the derivative f ′ ( t ) . We define a new fractional operator by substituting for this f ′ ( t ) a more general proportional derivative. This new operator can also be written as a Riemann–Liouville integral of a proportional derivative, or in some important special cases as a linear combination of a Riemann–Liouville integral and a Caputo derivative. We then conduct some analysis of the new definition: constructing its inverse operator and Laplace transform, solving some fractional differential equations using it, and linking it with a recently described bivariate Mittag-Leffler function.


2017 ◽  
Vol 22 (5) ◽  
pp. 654-670 ◽  
Author(s):  
Mikk Vikerpuur

A class of non-local boundary value problems for linear fractional differential equations with Caputo-type differential operators is considered. By using integral equation reformulation of the boundary value problem, we study the existence and smoothness of the exact solution. Using the obtained regularity properties and spline collocation techniques, we construct two numerical methods (Method 1 and Method 2) for finding approximate solutions. By choosing suitable graded grids, we derive optimal global convergence estimates and obtain some super-convergence results for Method 2 by requiring additional assumptions on equation and collocation parameters. Some numerical illustrations for verification of theoretical results is also presented.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Dumitru Baleanu ◽  
Hossein Jafari ◽  
Hasib Khan ◽  
Sarah Jane Johnston

AbstractThe study of coupled system of hybrid fractional differential equations (HFDEs) needs the attention of scientists for the exploration of its different important aspects. Our aim in this paper is to study the existence and uniqueness of mild solution (EUMS) of a coupled system of HFDEs. The novelty of this work is the study of a coupled system of fractional order hybrid boundary value problems (HBVP) with n initial and boundary hybrid conditions. For this purpose, we are utilizing some classical results, Leray–Schauder Alternative (LSA) and Banach Contraction Principle (BCP). Some examples are given for the illustration of applications of our results.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Anastassios K. Lazopoulos ◽  
Dimitrios Karaoulanis

Λ-Fractional Derivative (Λ-FD) is a new groundbreaking Fractional Derivative (FD) introduced recently in mechanics. This derivative, along with Λ-Transform (Λ-T), provides a reliable alternative to fractional differential equations’ current solving. To put it straightforwardly, Λ-Fractional Derivative might be the only authentic non-local derivative that exists. In the present article, Λ-Fractional Derivative is used to describe the phenomenon of viscoelasticity, while the whole methodology is demonstrated meticulously. The fractional viscoelastic Zener model is studied, for relaxation as well as for creep. Interesting results are extracted and compared to other methodologies showing the value of the pre-mentioned method.


Sign in / Sign up

Export Citation Format

Share Document