Highly permeable and selective sepiolite hybrid mixed matrix carbon membranes supported on plate carbon substrates for gas separation

2021 ◽  
Vol 174 ◽  
pp. 319-330
Author(s):  
Chen Yang ◽  
Bing Zhang ◽  
Suixin Zhang ◽  
Yonghong Wu ◽  
Tonghua Wang ◽  
...  
2010 ◽  
Vol 25 (5) ◽  
pp. 449-456 ◽  
Author(s):  
Lin LI ◽  
Tong-Hua WANG ◽  
Yi-Ming CAO ◽  
Jie-Shan QIU

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehtap Safak Boroglu ◽  
Ismail Boz ◽  
Busra Kaya

Abstract In our study, the synthesis of zeolitic imidazolate framework (ZIF-12) crystals and the preparation of mixed matrix membranes (MMMs) with various ZIF-12 loadings were targeted. The characterization of ZIF-12 and MMMs were carried out by Fourier transform infrared spectroscopy analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and thermomechanical analysis. The performance of MMMs was measured by the ability of binary gas separation. Commercial polyetherimide (PEI-Ultem® 1000) polymer was used as the polymer matrix. The solution casting method was utilized to obtain dense MMMs. In the SEM images of ZIF-12 particles, the particles with a rhombic dodecahedron structure were identified. From SEM images, it was observed that the distribution of ZIF-12 particles in the MMMs was homogeneous and no agglomeration was present. Gas permeability experiments of MMMs were measured for H2, CO2, and CH4 gases at steady state, at 4 bar and 35 °C by constant volume-variable pressure method. PEI/ZIF-12-30 wt% MMM exhibited high permeability and ideal selectivity values for H2/CH4 and CO2/CH4 were P H 2 / CH 4 = 331.41 ${P}_{{\text{H}}_{2}/{\text{CH}}_{4}}=331.41$ and P CO 2 / CH 4 = 53.75 ${P}_{{\text{CO}}_{2}/{\text{CH}}_{4}}=53.75$ gas pair.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


2021 ◽  
Vol 11 (2) ◽  
pp. 313-330
Author(s):  
Ovaid Mehmood ◽  
Sarah Farrukh ◽  
Arshad Hussain ◽  
Mohammad Younas ◽  
Zarrar Salahuddin ◽  
...  

2014 ◽  
Vol 241 ◽  
pp. 495-503 ◽  
Author(s):  
A.K. Zulhairun ◽  
A.F. Ismail ◽  
T. Matsuura ◽  
M.S. Abdullah ◽  
A. Mustafa

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2199
Author(s):  
Khadija Asif ◽  
Serene Sow Mun Lock ◽  
Syed Ali Ammar Taqvi ◽  
Norwahyu Jusoh ◽  
Chung Loong Yiin ◽  
...  

Polysulfone-based mixed matrix membranes (MMMs) incorporated with silica nanoparticles are a new generation material under ongoing research and development for gas separation. However, the attributes of a better-performing MMM cannot be precisely studied under experimental conditions. Thus, it requires an atomistic scale study to elucidate the separation performance of silica/polysulfone MMMs. As most of the research work and empirical models for gas transport properties have been limited to pure gas, a computational framework for molecular simulation is required to study the mixed gas transport properties in silica/polysulfone MMMs to reflect real membrane separation. In this work, Monte Carlo (MC) and molecular dynamics (MD) simulations were employed to study the solubility and diffusivity of CO2/CH4 with varying gas concentrations (i.e., 30% CO2/CH4, 50% CO2/CH4, and 70% CO2/CH4) and silica content (i.e., 15–30 wt.%). The accuracy of the simulated structures was validated with published literature, followed by the study of the gas transport properties at 308.15 K and 1 atm. Simulation results concluded an increase in the free volume with an increasing weight percentage of silica. It was also found that pure gas consistently exhibited higher gas transport properties when compared to mixed gas conditions. The results also showed a competitive gas transport performance for mixed gases, which is more apparent when CO2 increases. In this context, an increment in the permeation was observed for mixed gas with increasing gas concentrations (i.e., 70% CO2/CH4 > 50% CO2/CH4 > 30% CO2/CH4). The diffusivity, solubility, and permeability of the mixed gases were consistently increasing until 25 wt.%, followed by a decrease for 30 wt.% of silica. An empirical model based on a parallel resistance approach was developed by incorporating mathematical formulations for solubility and permeability. The model results were compared with simulation results to quantify the effect of mixed gas transport, which showed an 18% and 15% percentage error for the permeability and solubility, respectively, in comparison to the simulation data. This study provides a basis for future understanding of MMMs using molecular simulations and modeling techniques for mixed gas conditions that demonstrate real membrane separation.


2012 ◽  
Vol 35 (5) ◽  
pp. 885-892 ◽  
Author(s):  
H. Karkhanechi ◽  
H. Kazemian ◽  
H. Nazockdast ◽  
M. R. Mozdianfard ◽  
S. M. Bidoki

2017 ◽  
Vol 42 (39) ◽  
pp. 24830-24845 ◽  
Author(s):  
Janice B.S. Hamm ◽  
Alan Ambrosi ◽  
Julia G. Griebeler ◽  
Nilson R. Marcilio ◽  
Isabel Cristina Tessaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document