scholarly journals New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator

2018 ◽  
Vol 171 ◽  
pp. 611-621 ◽  
Author(s):  
J.C.B. Moraes ◽  
A. Font ◽  
L. Soriano ◽  
J.L. Akasaki ◽  
M.M. Tashima ◽  
...  
2015 ◽  
Vol 668 ◽  
pp. 304-311 ◽  
Author(s):  
João Cláudio Bassan de Moraes ◽  
Daniela Cintra de Araújo Queiroz ◽  
Jorge L. Akasaki ◽  
José Luiz Pinheiro Melges ◽  
M.V. Borrachero ◽  
...  

Sugar cane production is increasing in Brazil due the demand in manufacturing sugar and alcohol. During production process, several wastes are generated, such as sugar cane straw. After a burning process of this waste material, sugar cane straw ash (SCSA) is obtained, and may be used in the production of alternative binders. The aim of this paper is to assess the possibility of reuse SCSA as supplementary cementitious material in blended Portland cement mortars and as raw material in the production of alkali-activated binders. Blended Portland cement mortars were prepared using 0%, 20% and 30% of SCSA in replacement of Portland cement. For alkali-activated mortars, the activating solution is based on sodium hydroxide (NaOH) solution and different Slag/SCSA proportions in mass were assessed: 100/0, 75/25 and 50/50. Mechanical strength of mortars cured at room temperature was tested for 7 and 28 curing days. The results confirm that enhanced mechanical properties can be obtained for both alternative binders using SCSA on its composition.


2016 ◽  
Vol 124 ◽  
pp. 148-154 ◽  
Author(s):  
J.C.B. Moraes ◽  
M.M. Tashima ◽  
J.L. Akasaki ◽  
J.L.P. Melges ◽  
J. Monzó ◽  
...  

2021 ◽  
Author(s):  
João Pedro Bittencourt Batista ◽  
Maria Júlia Bassan de Moraes ◽  
Mauro Mitsuuchi Tashima ◽  
Jorge Luís Akasaki ◽  
Jordi Payá ◽  
...  

2018 ◽  
Vol 30 (6) ◽  
pp. 04018084 ◽  
Author(s):  
João Claudio Bassan de Moraes ◽  
Mauro Mitsuuchi Tashima ◽  
José Luiz Pinheiro Melges ◽  
Jorge Luís Akasaki ◽  
José Monzó ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3840 ◽  
Author(s):  
Alex Maldonado-Alameda ◽  
Jofre Mañosa ◽  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep Maria Chimenos

Alkali-activated binders (AABs) stand out as a promising alternative to replace ordinary Portland cement (OPC) due to the possibility of using by-products and wastes in their manufacturing. This paper assessed the potential of weathered bottom ash (WBA) from waste-to-energy plants and PAVAL® (PV), a secondary aluminium recycling process by-product, as precursors of AABs. WBA and PV were mixed at weight ratios of 98/2, 95/5, and 90/10. A mixture of waterglass (WG) and NaOH at different concentrations (4 and 6 M) was used as the alkaline activator solution. The effects of increasing NaOH concentration and PV content were evaluated. Alkali-activated WBA/PV (AA-WBA/PV) binders were obtained. Selective chemical extractions and physicochemical characterization revealed the formation of C-S-H, C-A-S-H, and (N,C)-A-S-H gels. Increasing the NaOH concentration and PV content increased porosity and reduced compressive strength (25.63 to 12.07 MPa). The leaching potential of As and Sb from AA-WBA/PV exceeded the threshold for acceptance in landfills for non-hazardous waste.


2021 ◽  
Vol 11 (13) ◽  
pp. 5887
Author(s):  
Thandiwe Sithole ◽  
Nelson Tsotetsi ◽  
Tebogo Mashifana

Utilisation of industrial waste-based material to develop a novel binding material as an alternative to Ordinary Portland Cement (OPC) has attracted growing attention recently to reduce or eliminate the environmental footprint associated with OPC. This paper presents an experimental study on the synthesis and evaluation of alkali activated Ground granulated blast furnace slag (GGBFS) composite using a NaOH solution as an alkaline activator without addition of silicate solution. Different NaOH concentrations were used to produce varied GGBFS based alkali activated composites that were evaluated for Uncofined Compressive Strength (UCS), durability, leachability, and microstructural performance. Alkali activated GGBFS composite prepared with 15 M NaOH solution at 15% L/S ratio achieved a UCS of 61.43 MPa cured for 90 days at ambient temperatures. The microstructural results revealed the formation of zeolites, with dense and non-porous morphology. Alkali activated GGBFS based composites can be synthesized using a sole alkaline activator with potential to reduce CO2 emission. The metal leaching tests revealed that there are no potential environmental pollution threats posed by the synthesized alkali activated GGBFS composites for long-term use.


2020 ◽  
Author(s):  
Naim Sedira ◽  
João Castro-Gomes

This study determines the effect of ground granulated blast furnace slag (GGBFS) and metakaolin (MK) on the microstructural properties of the tungsten mining waste-based alkali-activated binder (TMWM). During this investigation, TMWM was partially replaced with 10 wt.% GGBFS and 10 wt.% MK to improve the microstructure of the binder. In order to understand the effect of the substitutions on the microstructure, two pastes were produced to make a comparative study between the sample contain 100% TMWM and the ternary precursors. Both precursors were activated using a combination of alkaline activator solutions (sodium silicate and sodium hydroxide) with the ratio of 1:3 (66.6 wt.% sodium silicate combined with 33.33 wt.% of NaOH 8M). The alkali-activated mixes were cured in oven at temperature of 60 °C in the first day and at room temperature for the next 27 days. The reaction products N-A-S-H gel and (N,M)-A-S-H gel resulted from the alkaline activation reaction process. In addition, a formation of natrite (Na2CO3) with needles shape occurred as a reaction product of the fluorescence phenomena. However, a dense matrix resulted from the alkline activation of the ternary precursors containg different gels such as N-A-S-H, C-A-S-H and (N,M)-C-A-S-H gel, these results were obtained through SEM-EDS analyses, as well FTIR tests. Keywords: Mining Waste, Alkali-activated, Microstructure, Slag, Metakaolin


Sign in / Sign up

Export Citation Format

Share Document