scholarly journals Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA)

2016 ◽  
Vol 124 ◽  
pp. 148-154 ◽  
Author(s):  
J.C.B. Moraes ◽  
M.M. Tashima ◽  
J.L. Akasaki ◽  
J.L.P. Melges ◽  
J. Monzó ◽  
...  
2015 ◽  
Vol 668 ◽  
pp. 304-311 ◽  
Author(s):  
João Cláudio Bassan de Moraes ◽  
Daniela Cintra de Araújo Queiroz ◽  
Jorge L. Akasaki ◽  
José Luiz Pinheiro Melges ◽  
M.V. Borrachero ◽  
...  

Sugar cane production is increasing in Brazil due the demand in manufacturing sugar and alcohol. During production process, several wastes are generated, such as sugar cane straw. After a burning process of this waste material, sugar cane straw ash (SCSA) is obtained, and may be used in the production of alternative binders. The aim of this paper is to assess the possibility of reuse SCSA as supplementary cementitious material in blended Portland cement mortars and as raw material in the production of alkali-activated binders. Blended Portland cement mortars were prepared using 0%, 20% and 30% of SCSA in replacement of Portland cement. For alkali-activated mortars, the activating solution is based on sodium hydroxide (NaOH) solution and different Slag/SCSA proportions in mass were assessed: 100/0, 75/25 and 50/50. Mechanical strength of mortars cured at room temperature was tested for 7 and 28 curing days. The results confirm that enhanced mechanical properties can be obtained for both alternative binders using SCSA on its composition.


2021 ◽  
Author(s):  
João Pedro Bittencourt Batista ◽  
Maria Júlia Bassan de Moraes ◽  
Mauro Mitsuuchi Tashima ◽  
Jorge Luís Akasaki ◽  
Jordi Payá ◽  
...  

2018 ◽  
Vol 30 (6) ◽  
pp. 04018084 ◽  
Author(s):  
João Claudio Bassan de Moraes ◽  
Mauro Mitsuuchi Tashima ◽  
José Luiz Pinheiro Melges ◽  
Jorge Luís Akasaki ◽  
José Monzó ◽  
...  

2018 ◽  
Vol 171 ◽  
pp. 611-621 ◽  
Author(s):  
J.C.B. Moraes ◽  
A. Font ◽  
L. Soriano ◽  
J.L. Akasaki ◽  
M.M. Tashima ◽  
...  

2014 ◽  
Vol 600 ◽  
pp. 689-698 ◽  
Author(s):  
Vinicius N. Castaldelli ◽  
Mauro M. Tashima ◽  
José Luiz P. Melges ◽  
Jorge L. Akasaki ◽  
J.M. Monzó ◽  
...  

Alkali activated binders require the addition of a mineral-rich amorphous silica and alumina. This paper proposes the use of a mineral residue from the burning of sugar cane bagasse. The alkali activated mixtures were prepared containing binary mixtures of sugar cane bagasse ash (SCBA) and other mineral admixtures: fly ash (FA) or blast furnace slag (BFS). As alkaline activators, mixtures of alkali (Na+ or K+) hydroxide and alkali (Na+ or K+) silicate were used. Alkali-activated pastes and mortars containing binary systems SCBA/FA or SCBA/BFS were prepared and cured at 65 oC. Microstructural properties of these alternative binders were assessed by means of TGA, SEM, XRD and pH measurements. Mechanical strength of mortars was performed after 3 and 7 days at 65 oC. Compressive mechanical strengths of these mortars were in the range 30-55 MPa, showing the good mechanical performance achieved by the alkali activation. Microstructural studies suggested the development of stable matrices and the formation of typical gel.


2021 ◽  
Vol 11 (9) ◽  
pp. 3840 ◽  
Author(s):  
Alex Maldonado-Alameda ◽  
Jofre Mañosa ◽  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep Maria Chimenos

Alkali-activated binders (AABs) stand out as a promising alternative to replace ordinary Portland cement (OPC) due to the possibility of using by-products and wastes in their manufacturing. This paper assessed the potential of weathered bottom ash (WBA) from waste-to-energy plants and PAVAL® (PV), a secondary aluminium recycling process by-product, as precursors of AABs. WBA and PV were mixed at weight ratios of 98/2, 95/5, and 90/10. A mixture of waterglass (WG) and NaOH at different concentrations (4 and 6 M) was used as the alkaline activator solution. The effects of increasing NaOH concentration and PV content were evaluated. Alkali-activated WBA/PV (AA-WBA/PV) binders were obtained. Selective chemical extractions and physicochemical characterization revealed the formation of C-S-H, C-A-S-H, and (N,C)-A-S-H gels. Increasing the NaOH concentration and PV content increased porosity and reduced compressive strength (25.63 to 12.07 MPa). The leaching potential of As and Sb from AA-WBA/PV exceeded the threshold for acceptance in landfills for non-hazardous waste.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1673 ◽  
Author(s):  
Hyeongmin Son ◽  
Sol Moi Park ◽  
Joon Ho Seo ◽  
Haeng Ki Lee

This present study investigates the effects of CaSO4 incorporation on the pore structure and drying shrinkage of alkali-activated slag and fly ash. The slag and fly ash were activated at a 5:5 ratio by weighing with a sodium silicate. Thereafter, 0%, 5%, 10%, and 15% of CaSO4 were incorporated to investigate the changes in phase formation and internal pore structure. X-Ray Diffraction (XRD), thermogravimetry (TG)/derivative thermogravimetry (DTG), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and drying shrinkage tests were carried out to find the correlation between the pore structure and drying shrinkage of the specimens. The results showed that CaSO4 incorporation increased the formation of thenardite, and these phase changes affected the pore structure of the activated fly ash and slag. The increase in the CaSO4 content increased the pore distribution in the mesopore. As a result, the capillary tension and drying shrinkage decreased.


Sign in / Sign up

Export Citation Format

Share Document