Evaluation of aggregate gradation on aggregate packing in porous asphalt mixture (PAM) by 3D numerical modelling and laboratory measurements

2020 ◽  
Vol 246 ◽  
pp. 118414 ◽  
Author(s):  
Dana Mutiara Kusumawardani ◽  
Yiik Diew Wong
2015 ◽  
Vol 9 (1) ◽  
pp. 962-967
Author(s):  
Hongchang Wang ◽  
Minggang Zhou ◽  
Ming Li ◽  
Kunitomo Sugiura

Porous asphalts pavement arouses the attentions of the world by its good performance such as reduce the potential for hydroplaning, reduce splash and spray, improve visibility, decline traffic noise, and improve driving safety. But the void clogging lessens its durable function. So in this paper appropriate clogging agent was choose, and seepage coefficients were tested by using asphalt mixture pavement surface permeameter to simulation multi-cycle drainage clogging test. The influence of asphalt mixture design parameter such as the porosity, the maximum sizes of the aggregate, gradation and asphalt on the drainage and counter-clogging ability of porous asphalts was researched. The tests indicated that the porosity has an obvious influence on both porous asphalts’ permeable ability and counter-clogging ability. Comparing the specimen of 21% void to the ones of 16% void, the drain ability is improved 49.8%, the counter-clogging ability is improved 55.0%. The maximum sizes of the aggregate has an obvious influence on porous asphalts’ counter-clogging ability, but no an obvious influence on the drain ability. Comparing the specimen of 16mm to the 13mm, the counterclogging ability is proved 48%. PAC with the coarser graduation has a better performance on drain and counter-clogging ability. TPS modifier changes PAC little on drain and counter-clogging ability.


2015 ◽  
Vol 76 (14) ◽  
Author(s):  
Norhidayah Abdul Hassan ◽  
Nor Asniza Mohamed Abdullah ◽  
Nurul Athma Mohd Shukry ◽  
Mohd Zul Hanif Mahmud ◽  
Nur Zurairahetty Mohd Yunus ◽  
...  

Porous asphalt mixture is one of the alternative solutions to increase pervious surface area due to urbanization. The uniqueness of porous asphalt surface textures and internal structures allows the mixture to become a temporary storm-water retention and capable to channel excessive storm water. However, one of the major problems that affect the performance of porous asphalt mixtures is the clogging. Therefore, this study aims to determine the effect of clogging towards the permeability of porous asphalt. A total of 30 gyratory compacted samples were fabricated according to aggregate gradation recommended by Malaysia Public Works Department. The clogging materials were collected from two different location, residential area and major highway. The composition and characteristics of the clogging materials were investigated using Plastic Limit, Liquid Limit and Scanning Electron Microscope (SEM). The permeability test was conducted to investigate the permeability rate of the compacted samples based on different clogging material types, clogging concentrations and clogging cycles. In addition, the compacted samples were scanned using X-ray Computed Tomography to obtain the air voids distribution throughout the samples for comparison. It was found that higher concentration of clogging materials and clogging cycles reduced the rate of permeability. Clogging material collected from residential area has higher tendency to clog the void spaces compared to the one obtained from highway.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Nor Asniza Mohamed Abdullah ◽  
Norhidayah Abdul Hassan ◽  
Nurul Athma Mohd Shukry ◽  
Mohd Zul Hanif Mahmud ◽  
Ramadhansyah Putrajaya ◽  
...  

Clogging is a major problem that occurs throughout the service life of porous asphalt due to the open nature of the mixture itself. Diatomite with characteristic of abrasiveness and porous structure seems to have potential in order to remove the clogging materials that mainly consists of soils. This study aims to investigate the effects of diatomite as anti-clogging agent on the permeability rate and strength of porous asphalt. The porous asphalt samples were prepared using Malaysia aggregate gradation and polymer modified bitumen of PG76 was used as the binder. This study focuses on clay as the clogging material at different concentration. A fixed amount of 0.5 g/L diatomite was applied to the porous asphalt samples as an anti-clogging agent prior to clogging cycles. The permeability test and resilient modulus were then conducted at different clogging concentrations (0.5, 1.0, 1.5 g/L) and cycles, with and without diatomite. It was found that samples with diatomite have a higher permeability rate compared to those without any application of diatomite after a few clogging cycles. As the clogging cycles increase, the clogging materials have trapped and filled up the voids in the porous asphalt samples and increase the resilient modulus result.


2021 ◽  
Vol 13 (6) ◽  
pp. 3005
Author(s):  
Jiangang Yang ◽  
Chen Sun ◽  
Wenjie Tao ◽  
Jie Gao ◽  
Bocheng Huang ◽  
...  

In this study, the compaction characteristics of recycled hot-mix asphalt (RHMA) were evaluated using the void content (VV), compaction energy index (CEI), slope of accumulated compaction energy (K), and lock point (LP). Then, the effects of the compaction parameters, including the gradation of the RHMA, reclaimed asphalt pavement (RAP) content, temperature of gyrations, and number of gyrations, on the compaction characteristics of RHMA were investigated. An orthogonal experiment was designed and the data collected were analyzed via range analysis; then, a regression model was generated relying on a quadratic polynomial. Furthermore, the regression model was used for the comparison and prediction of the mixture’s compactability during the material design. Finally, the compaction mechanism of RHMA was discussed from the perspective of the void content of RAP particles. The results showed that a finer aggregate gradation, a higher gyration temperature, a greater number of gyrations, and a higher RAP content were effective for increasing the compactability of RHMA. The range analysis results suggest that the gradation of RHMA has the greatest influence on compactability, followed by the RAP content. The RAP aggregate cannot diffuse to a new mixture completely, so the remained RAP particle reduces the void content of RHMA. Therefore, a higher RAP content up to 50% can help RHMA to achieve the designed void content with higher efficiency.


Sign in / Sign up

Export Citation Format

Share Document