Mechanical properties and reinforcement mechanisms evaluation of closed-cell polymer foams reinforced by recycled glass beads

2021 ◽  
Vol 275 ◽  
pp. 122062
Author(s):  
Shunze Cao ◽  
Yuwu Zhang ◽  
Yang Lu
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


2015 ◽  
Vol 107 ◽  
pp. 228-238 ◽  
Author(s):  
Wen-Yea Jang ◽  
Wen-Yen Hsieh ◽  
Ching-Chien Miao ◽  
Yu-Chang Yen

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 698 ◽  
Author(s):  
Marcin Małek ◽  
Mateusz Jackowski ◽  
Waldemar Łasica ◽  
Marta Kadela ◽  
Marcin Wachowski

The progressive increase in the amount of glass waste produced each year in the world made it necessary to start the search for new recycling methods. This work summarizes the experimental results of the study on mortar samples containing dispersed reinforcement in the form of glass fibers, fully made from melted glass waste (bottles). Mortar mixes were prepared according to a new, laboratory-calculated recipe containing glass fibers, granite as aggregate, polycarboxylate-based deflocculant and Portland cement (52.5 MPa). This experimental work involved three different contents (600, 1200, and 1800 g/m3) of recycled glass fibers. After 28 days, the mechanical properties such as compressive, flexural, and split tensile strength were characterized. Furthermore, the modulus of elasticity and Poisson coefficient were determined. The initial and final setting times, porosity, and pH of the blends were measured. Images of optical microscopy (OM) were taken. The addition of glass fibers improves the properties of mortar. The highest values of mechanical properties were obtained for concrete with the addition of 1800 g/m3 of glass fibers (31.5% increase in compressive strength, 29.9% increase in flexural strength, and 97.6% increase in split tensile strength compared to base sample).


2020 ◽  
Vol 01 (01) ◽  
Author(s):  
M A Zulhakimie ◽  
◽  
Anika Zafiah M. Rus ◽  
N S S Sulong ◽  
A Syah Z A ◽  
...  

Wood powder filler applied to the bio-based and epoxy polymer foams has the potential to reinforce the polymer foam structure. The 'Meranti' wood filler type was used as the filler in this analysis. In order to observe the pore size of each sample when exposed to different hours of UV exposure using optical microscopy (OM), this study was made.This analysis was conducted to compare the mechanical properties of each sample with different filler ratios of 0 wt%, 5 wt%, 10 wt%, 15wt% and 20 wt% at different UV exposure hours, which is 0 hour to 6000 hours with a 2000 hour rapid increase. Using the DMA Q800 TA unit, the mechanical properties were studied. In order to obtain the product of their mechanical properties, samples having a scale of 40 x 10 x 5 mm were clamped into the machine. The results will show the value of tan δ, loss modulus and storage modulus from the DMA test.The tan δ value shows that the high tanδvalue will be produced by the higher ratio filler. In contrast to bio-based polymer foams, epoxy polymer foams with powder fillers have the highest tan δ value. It shows that the higher filler ratio can be reported with the lower tan δ value. As the filler ratio filler in the polymer foams increased, the consequence of storage and loss modulus was found to increase. The greater the modulus of loss and the modulus of storage, the lower the temperature. As energy is lost as heat during UV irradiation exposure, bio-based polymer foams with a high powder filler ratio can dissipate more energy.


2010 ◽  
Vol 63 ◽  
pp. 147-151 ◽  
Author(s):  
David A. Schiraldi ◽  
Matthew D. Gawryla ◽  
Saeed Alhassan

A simple, inexpensive, and environmentally-friendly process for converting mixtures of clays and polymers has been developed. Polymer and clay are combined in water, and the mixtures are freeze dried to produce materials which have bulk densities typically in the range of 0.03 – 0.15 g/cm3. These low density polymer/clay aerogel materials possess good mechanical properties similar to those of traditional polymer foams, can be reinforced with fibers, modified with nanoparticles, biomineralized, or converted into porous ceramics.


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2016 ◽  
Vol 666 ◽  
pp. 245-256 ◽  
Author(s):  
M.A. Islam ◽  
M.A. Kader ◽  
P.J. Hazell ◽  
A.D. Brown ◽  
M. Saadatfar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document