The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect

2009 ◽  
Vol 28 (8) ◽  
pp. 634-639 ◽  
Author(s):  
Huili Wang ◽  
Kai Wen ◽  
Xiuyun Zhao ◽  
Xuedong Wang ◽  
Aiying Li ◽  
...  
2021 ◽  
Vol 12 (2) ◽  
pp. 1143-1150
Author(s):  
Lavanya J ◽  
Chanthosh S ◽  
Reshma Shrii ◽  
Viknesh V ◽  
Deepika S ◽  
...  

The study was aimed to find an alternate approach for chemicals used in agriculture to avoid microbial infections. Fungal pathogens cause different types of plant diseases and affect a majority of edible crops by destroying the tissues of the plant in a direct or indirect mechanism. So, an alternative approach led to the development of biocontrol agents using endophytic  bacteria. A total of 8 endophytic bacteria were isolated from the root, stem, and leaves of radish (Raphanus sativus). The antagonistic activity of these bacteria against the 2 isolated plant pathogenic fungi was determined in vitro. Two out of eight bacteria showed more than 50% inhibitory activity against one fungus, were further characterized using the 16s rRNA sequencing method. On the basis of the phylogenetic tree of the 16s rRNA method, the endophytic bacterial samples were identified as Tonsilliphilus suis  and Exiguobacterium aurantiacum against plant pathogenic Aspergillus flavus  isolated from Raphanus sativus, which makes them highly suitable as an alternative for chemical fertilizers to provide resistance to plant pathogenic fungi. The cell wall degrading activities such as protease activity, amylase activity, and plant growth-promoting properties such as Hydrogen cyanide (HCN), Indole acetic acid (IAA), ammonia production of these endophytic bacteria were evaluated. The results show that T. suis  is the most effective strain for radish growth development.


2017 ◽  
Vol 199 (3) ◽  
pp. 513-517 ◽  
Author(s):  
Van T. K. Pham ◽  
Hans Rediers ◽  
Maarten G. K. Ghequire ◽  
Hiep H. Nguyen ◽  
René De Mot ◽  
...  

2020 ◽  
Vol 33 (7) ◽  
pp. 876-879
Author(s):  
Can Chen ◽  
Zonghao Yue ◽  
Cuiwei Chu ◽  
Keshi Ma ◽  
Lili Li ◽  
...  

Bacillus sp. strain WR11 isolated from the root of wheat (Triticum aestivum L.) possesses abiotic stress alleviating properties and produces several types of enzymes. However, its genomic information is lacking. The study described the complete genome sequence of the bacterium. The size of the genome was 4 202 080 base pairs that consisted of 4 405 genes in total. The G+C content of the circular genome was 43.53% and there were 4 170 coding genes, 114 pseudo genes, 30 ribosome RNAs, 86 tRNAs, and 5 ncRNAs, based on the Prokaryotic Genome Annotation Pipeline (PGAP). Many genes were related to the stress-alleviating properties and 124 genes existed in the CAZy database. The complete genome data of strain WR11 will provide valuable resources for genetic dissection of its plant growth-promoting function and symbiotic interaction with plant.


Sign in / Sign up

Export Citation Format

Share Document