4. Adaptations and climate change in Antarctic marine animals

Cryobiology ◽  
2010 ◽  
Vol 61 (3) ◽  
pp. 363
Author(s):  
Lloyd S. Peck
Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Katherine Kornei

As the ocean warms because of climate change, the louder din could mask other marine animals’ calls used to navigate, forage, and find mates.


mSphere ◽  
2021 ◽  
Author(s):  
Arkadiy I. Garber ◽  
Jessica R. Zehnpfennig ◽  
Cody S. Sheik ◽  
Michael W. Henson ◽  
Gustavo A. Ramírez ◽  
...  

The impacts of climate change in polar regions, like Antarctica, have the potential to alter numerous ecosystems and biogeochemical cycles. Increasing temperature and freshwater runoff from melting ice can have profound impacts on the cycling of organic and inorganic nutrients between the pelagic and benthic ecosystems.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Marianne Falardeau ◽  
Elena M. Bennett

Climate change affects Arctic marine ecosystems, the ecosystem services they provide, and the human well-being that relies on these services. The impacts of climate change in the Arctic and elsewhere involve cascading effects and feedbacks that flow across social-ecological systems (SES), such as when sea ice loss alters food security through changes in the distribution of marine animals. These cascades and feedbacks across social and ecological systems can exacerbate the effects of climate change or lead to surprising outcomes. Identifying where cascades and feedbacks may occur in SES can help anticipate, or even prevent unexpected outcomes of climate change, and lead to improved policy responses. Here, we perform a systematic literature review of multidisciplinary Arctic research to determine the state of knowledge of the impacts of climate change on marine ecosystems. Then, in a case study corresponding to Inuit regions, we use network analysis to integrate research into a SES perspective and identify which linkages have been most versus least studied, and whether some potential cascades and feedbacks have been overlooked. Finally, we propose ways forward to advance knowledge of changing Arctic marine SES, including transdisciplinary approaches involving multiple disciplines and the collaboration of Indigenous and local knowledge holders.


2020 ◽  
Vol 6 (50) ◽  
pp. eabb8428
Author(s):  
M. L. Pinsky ◽  
L. A. Rogers ◽  
J. W. Morley ◽  
T. L. Frölicher

Societies increasingly use multisector ocean planning as a tool to mitigate conflicts over space in the sea, but such plans can be highly sensitive to species redistribution driven by climate change or other factors. A key uncertainty is whether planning ahead for future species redistributions imposes high opportunity costs and sharp trade-offs against current ocean plans. Here, we use more than 10,000 projections for marine animals around North America to test the impact of climate-driven species redistributions on the ability of ocean plans to meet their goals. We show that planning for redistributions can substantially reduce exposure to risks from climate change with little additional area set aside and with few trade-offs against current ocean plan effectiveness. Networks of management areas are a key strategy. While climate change will severely disrupt many human activities, we find a strong benefit to proactively planning for long-term ocean change.


2020 ◽  
Vol 653 ◽  
pp. 217-231
Author(s):  
GF Kett ◽  
SC Culloty ◽  
SA Lynch ◽  
MAK Jansen

Ultraviolet radiation (UVR) is an important environmental factor that can have an impact directly, or indirectly, on the health of organisms. UVR also has the potential to inactivate pathogens in surface waters. As a result, UVR can alter host-pathogen relationships. Bivalve species are threatened by various pathogens. Here, we assessed the impacts of UVR on (i) bivalves, (ii) bivalve pathogens and (iii) the bivalve host-pathogen relationship. UVR consistently impedes pathogens. However, the effect of UVR on marine animals is variable, with both positive and negative impacts. The limited available data allude to the potential to exploit natural UVR for disease management in aquaculture, but also highlight a striking knowledge gap and uncertainty relating to climate change.


2007 ◽  
Vol 19 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Stephen Nicol ◽  
John Croxall ◽  
Phil Trathan ◽  
Nick Gales ◽  
Eugene Murphy

AbstractA recent review by Ainley et al. has suggested that recent investigations of the ecological structure and processes of the Southern Ocean have “almost exclusively taken a bottom-up, forcing-by-physical-processes approach relating individual species' population trends to climate change”. We examine this suggestion and conclude that, in fact, there has been considerable research effort into ecosystem interactions over the last 25 years, particularly through research associated with management of the living resources of the Southern Ocean. Future Southern Ocean research will make progress only when integrated studies are planned around well structured hypotheses that incorporate both the physical and biological drivers of ecosystem processes.


Sign in / Sign up

Export Citation Format

Share Document