scholarly journals Gut microbiota in Parkinson's disease: Temporal stability and relations to disease progression

EBioMedicine ◽  
2019 ◽  
Vol 44 ◽  
pp. 691-707 ◽  
Author(s):  
Velma T.E. Aho ◽  
Pedro A.B. Pereira ◽  
Sari Voutilainen ◽  
Lars Paulin ◽  
Eero Pekkonen ◽  
...  
2018 ◽  
Vol 2 (S1) ◽  
pp. 15-15
Author(s):  
Stephanie M. Garcia ◽  
Wenbo Zhou ◽  
Curt R. Freed

OBJECTIVES/SPECIFIC AIMS: Determine if synthetic or endogenously produced butyrate can delay Parkinson’s disease (PD) progression, attenuate PD associated GI dysfunction, and impact the gut-microbiota in mice expressing human mutant aSyn. METHODS/STUDY POPULATION: Two transgenic mouse models expressing human mutant alpha-synuclein (aSyn) will be used. Transgenic mice expressing aSyn A53T display GI dysfunction before motor deficit onset and will be used to investigate treatment impact on PD associated GI dysfunction. Mice expressing aSyn Y39C more accurately recapitulate age-related neuropathology and behavioral deficits and will be used to assess treatment impact on PD-associated neuropathology, motor, and cognitive function. Mice will receive a synthetic sodium butyrate, sodium phenylbutyrate, or a synbiotic treatment regimen for 3 months. Disease progression will be assessed by aSyn brain and gut neuropathology, brain and gut inflammatory status, behavioral deficits, and gastrointestinal function. In addition, fecal and gut-microbiota composition and neuroprotective gene expression in the brain will be investigated. RESULTS/ANTICIPATED RESULTS: Our preliminary data shows that both sodium butyrate and sodium phenylbutyrate delay disease progression in aSyn Y39C mice. Butyrate-treated mice have reduced aSyn oligomerization, reduced Lewy body formation, and improved motor and cognitive function compared to placebo-treated mice. 16S rRNA sequencing did not reveal fecal-microbiota shifts between treatment groups or with age progression. Further analysis assessing expression levels for genes with anti-oxidant and protein degradation roles will be performed to determine if sodium butyrate and sodium phenylbutyrate similarly impact cellular mechanisms to delay neurodegeneration. Our future experiments will focus on comparing sodium butyrate and synbiotic treatment outcomes in aSyn A53T mice. DISCUSSION/SIGNIFICANCE OF IMPACT: Our lab developed a Tg mouse model that more accurately recapitulate age-related symptoms, pathology, and mechanisms observed in PD patients compared with animal models onset by neurotoxins. Our use of an age-dependent model of a severe form of Parkinsonism, DLB, will better predict clinical outcomes in PD populations. We will be the first to assess if elevating select microbial product production enhances neuroprotective brain activity in a PD model. Results obtained will further characterize gut-brain axis communication mechanisms. These proposed experiments will be the first to determine if elevating microbial products improves GI deficits associated with PD and may lead to insight on the gut-brain axis role in PD. Overall, this proposal will be the first to investigate a novel, highly accessible treatment with the potential to delay PD progression and target motor, cognitive, and GI deficits associated with PD. Due to the current FDA approval of probiotics and prebiotics that enhance butyrate production, results obtained may be quickly translated for clinical use.


2021 ◽  
Vol 429 ◽  
pp. 119515
Author(s):  
Rocco Cerroni ◽  
Daniele Pietrucci ◽  
Matteo Conti ◽  
Mariangela Pierantozzi ◽  
Valeria Unida ◽  
...  

2020 ◽  
Vol 70 ◽  
pp. 20-22 ◽  
Author(s):  
Daniel Grün ◽  
Valerie C. Zimmer ◽  
Jil Kauffmann ◽  
Jörg Spiegel ◽  
Ulrich Dillmann ◽  
...  

2021 ◽  
Vol 81 ◽  
pp. 307-311 ◽  
Author(s):  
Claudio Liguori ◽  
Valentino De Franco ◽  
Rocco Cerroni ◽  
Matteo Spanetta ◽  
Nicola Biagio Mercuri ◽  
...  

Author(s):  
Junmei Shang ◽  
Shurong Ma ◽  
Caixia Zang ◽  
Xiuqi Bao ◽  
Yan Wang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Velma T. E. Aho ◽  
Madelyn C. Houser ◽  
Pedro A. B. Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and how they contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of SCFAs, inflammatory factors, and zonulin in stool. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are distinct in PD and are sex-dependent. This study revealed potential alterations in microbiota-host interactions and links between earlier PD onset and intestinal inflammatory responses and reduced SCFA levels, highlighting candidate molecules and pathways which may contribute to PD pathogenesis and clinical presentation and which warrant further investigation.


Sign in / Sign up

Export Citation Format

Share Document