behavioral deficits
Recently Published Documents


TOTAL DOCUMENTS

1176
(FIVE YEARS 372)

H-INDEX

78
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Caleb Ing ◽  
David O. Warner ◽  
Lena S. Sun ◽  
Randall P. Flick ◽  
Andrew J. Davidson ◽  
...  

Anesthetic agents disrupt neurodevelopment in animal models, but evidence in humans is mixed. The morphologic and behavioral changes observed across many species predicted that deficits should be seen in humans, but identifying a phenotype of injury in children has been challenging. It is increasingly clear that in children, a brief or single early anesthetic exposure is not associated with deficits in a range of neurodevelopmental outcomes including broad measures of intelligence. Deficits in other domains including behavior, however, are more consistently reported in humans and also reflect findings from nonhuman primates. The possibility that behavioral deficits are a phenotype, as well as the entire concept of anesthetic neurotoxicity in children, remains a source of intense debate. The purpose of this report is to describe consensus and disagreement among experts, summarize preclinical and clinical evidence, suggest pathways for future clinical research, and compare studies of anesthetic agents to other suspected neurotoxins.


2022 ◽  
pp. 1-13
Author(s):  
Prashanth Komirishetty ◽  
Aparna Areti ◽  
Vijay Kumar Arruri ◽  
Ramakrishna Sistla ◽  
Ranadeep Gogoi ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Takuya Takeichi ◽  
John Y. W. Lee ◽  
Yusuke Okuno ◽  
Yuki Miyasaka ◽  
Yuya Murase ◽  
...  

Heterozygous mutations in JAK1 which result in JAK-STAT hyperactivity have been implicated in an autosomal dominant disorder that features multi-organ immune dysregulation. This study identifies another previously unreported heterozygous missense JAK1 mutation, H596D, in an individual with a unique autoinflammatory keratinization disease associated with early-onset liver dysfunction and autism. Using CRISPR-Cas9 gene targeting, we generated mice with an identical Jak1 knock-in missense mutation (Jak1H595D/+;I596I/+;Y597Y/+ mice) that recapitulated key aspects of the human phenotype. RNA sequencing of samples isolated from the Jak1H595D/+;I596I/+;Y597Y/+ mice revealed the upregulation of genes associated with the hyperactivation of tyrosine kinases and NF-κB signaling. Interestingly, there was a strong correlation between genes downregulated in Jak1H595D/+;I596I/+;Y597Y/+ mice and those downregulated in the brain of model mice with 22q11.2 deletion syndrome that showed cognitive and behavioral deficits, such as autism spectrum disorders. Our findings expand the phenotypic spectrum of JAK1-associated disease and underscore how JAK1 dysfunction contributes to this autoinflammatory disorder.


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132044
Author(s):  
Fan Hu ◽  
Weifeng Liang ◽  
Linke Zhang ◽  
Huan Wang ◽  
Zimu Li ◽  
...  

2022 ◽  
Author(s):  
Najah L. Walton ◽  
Pantelis Antonoudiou ◽  
Lea Barros ◽  
Alyssa DiLeo ◽  
Jenah Gabby ◽  
...  

Chronic stress is a major risk factor for psychiatric illnesses, including depression; however, the pathophysiological mechanisms whereby stress leads to mood disorders remain unclear. The recent FDA approval of antidepressants with novel mechanisms of action, like Zulresso®, a synthetic neuroactive steroid analog with molecular pharmacology similar to allopregnanolone, has spurred interest in new therapeutic targets and, potentially, novel pathophysiological mechanisms for depression. Allopregnanolone acts as a positive allosteric modulator of GABAA receptors (GABAARs), acting preferentially at δ subunit-containing receptors (δ-GABAARs). Accumulating clinical and preclinical evidence supports the antidepressant effects of exogenous administration of allopregnanolone and allopregnanolone analogs; however, the role of endogenous neurosteroids in the pathophysiology of depression remains unknown. Here, we examine whether altered neurosteroid signaling may contribute to behavioral deficits following chronic unpredictable stress (CUS) in mice. We first identified reductions in expression of δ-GABAARs, the predominant site of action of 5a-reduced neuroactive steroids, following CUS. Additionally, utilizing LC-MS/MS we discovered a decrease in levels of allopregnanolone in the BLA, but not plasma of mice following CUS, an indication of impaired neurosteroid synthesis. CRISPR knockdown the rate-limiting enzymes involved in allopregnanolone synthesis, 5α-reductase type 1 and 2, in the BLA mimicked the behavioral deficits associated with CUS in mice. Furthermore, overexpression expression of 5α-reductase type 1 and 2 in the BLA improved behavioral outcomes. Collectively, this suggests chronic stress impairs endogenous neurosteroid signaling in the BLA which is sufficient to induce behavioral deficits similar to those observed following CUS. Further, these studies suggest that the therapeutic efficacy of allopregnanolone-based treatments may be due to their ability to directly target the underlying pathophysiology of mood disorders. Therefore, targeting endogenous neurosteroidogenesis may offer a novel therapeutic strategy for the treatment of mood disorders.


2021 ◽  
Vol 30 (6) ◽  
pp. 415-429
Author(s):  
Juli Choi ◽  
Hye-Jin Kwon ◽  
Ju-Young Seoh ◽  
Pyung-Lim Han
Keyword(s):  

Author(s):  
Martina Stazi ◽  
Sandra Lehmann ◽  
M. Sadman Sakib ◽  
Tonatiuh Pena-Centeno ◽  
Luca Büschgens ◽  
...  

AbstractEpidemiological studies indicate that the consumption of caffeine, the most commonly ingested psychoactive substance found in coffee, tea or soft drinks, reduces the risk of developing Alzheimer’s disease (AD). Previous treatment studies with transgenic AD mouse models reported a reduced amyloid plaque load and an amelioration of behavioral deficits. It has been further shown that moderate doses of caffeine have the potential to attenuate the health burden in preclinical mouse models of a variety of brain disorders (reviewed in Cunha in J Neurochem 139:1019–1055, 2016). In the current study, we assessed whether long-term caffeine consumption affected hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. Treatment over a 4-month period reduced hippocampal neuron loss, rescued learning and memory deficits, and ameliorated impaired neurogenesis. Neuron-specific RNA sequencing analysis in the hippocampus revealed an altered expression profile distinguished by the up-regulation of genes linked to synaptic function and processes, and to neural progenitor proliferation. Treatment of 5xFAD mice, which develop prominent amyloid pathology, with the same paradigm also rescued behavioral deficits but did not affect extracellular amyloid-β (Aβ) levels or amyloid precursor protein (APP) processing. These findings challenge previous assumptions that caffeine is anti-amyloidogenic and indicate that the promotion of neurogenesis might play a role in its beneficial effects.


2021 ◽  
Vol 22 (24) ◽  
pp. 13442
Author(s):  
Guy C. Brown

After stroke, there is a rapid necrosis of all cells in the infarct, followed by a delayed loss of neurons both in brain areas surrounding the infarct, known as ‘selective neuronal loss’, and in brain areas remote from, but connected to, the infarct, known as ‘secondary neurodegeneration’. Here we review evidence indicating that this delayed loss of neurons after stroke is mediated by the microglial phagocytosis of stressed neurons. After a stroke, neurons are stressed by ongoing ischemia, excitotoxicity and/or inflammation and are known to: (i) release “find-me” signals such as ATP, (ii) expose “eat-me” signals such as phosphatidylserine, and (iii) bind to opsonins, such as complement components C1q and C3b, inducing microglia to phagocytose such neurons. Blocking these factors on neurons, or their phagocytic receptors on microglia, can prevent delayed neuronal loss and behavioral deficits in rodent models of ischemic stroke. Phagocytic receptors on microglia may be attractive treatment targets to prevent delayed neuronal loss after stroke due to the microglial phagocytosis of stressed neurons.


2021 ◽  
Vol 9 (12) ◽  
pp. 2548
Author(s):  
Francesco Valeri ◽  
Malena dos Santos Guilherme ◽  
Fuqian He ◽  
Nicolai M. Stoye ◽  
Andreas Schwiertz ◽  
...  

Alzheimer’s disease is a progressive neurodegenerative disorder affecting around 30 million patients worldwide. The predominant sporadic variant remains enigmatic as the underlying cause has still not been identified. Since efficient therapeutic treatments are still lacking, the microbiome and its manipulation have been considered as a new, innovative approach. 5xFAD Alzheimer’s disease model mice were subjected to one-time fecal material transfer after antibiotics-treatment using two types of inoculation: material derived from the caecum of age-matched (young) wild type mice or from middle aged, 1 year old (old) wild type mice. Mice were profiled after transfer for physiological parameters, microbiome, behavioral tasks, and amyloid deposition. A single time transfer of cecal material from the older donor group established an aged phenotype in the recipient animals as indicated by elevated cultivatable fecal Enterobacteriaceae and Lactobacillaceae representative bacteria, a decreased Firmicutes amount as assessed by qPCR, and by increased levels of serum LPS binding protein. While behavioral deficits were not accelerated, single brain regions (prefrontal cortex and dentate gyrus) showed higher plaque load after transfer of material from older animals. We could demonstrate that the age of the donor of cecal material might affect early pathological hallmarks of Alzheimer’s disease. This could be relevant when considering new microbiome-based therapies for this devastating disorder.


Sign in / Sign up

Export Citation Format

Share Document