scholarly journals Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation

2021 ◽  
Vol 208 ◽  
pp. 111752
Author(s):  
Nandita Medda ◽  
Subrata Kumar De ◽  
Smarajit Maiti
Author(s):  
John C. Garancis ◽  
Robert O. Hussa ◽  
Michael T. Story ◽  
Donald Yorde ◽  
Roland A. Pattillo

Human malignant trophoblast cells in continuous culture were incubated for 3 days in medium containing 1 mM N6-O2'-dibutyryl cyclic adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) and 1 mM theophylline. The culture fluid was replenished daily. Stimulated cultures secreted many times more chorionic gonadotropin and estrogens than did control cultures in the absence of increased cellular proliferation. Scanning electron microscopy revealed remarkable surface changes of stimulated cells. Control cells (not stimulated) were smooth or provided with varying numbers of microvilli (Fig. 1). The latter, usually, were short and thin. The surface features of stimulated cells were considerably different. There was marked increase of microvilli which appeared elongated and thick. Many cells were covered with confluent polypoid projections (Fig. 2). Transmission electron microscopy demonstrated marked activity of cytoplasmic organelles. Mitochondria were increased in number and size; some giant forms with numerous cristae were observed.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2001 ◽  
Vol 120 (5) ◽  
pp. A103-A103
Author(s):  
X CHEN ◽  
D JOHNS ◽  
D GEIMAN ◽  
E MARBAN ◽  
V YANG

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


1996 ◽  
Vol 76 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Sylvia T Singer ◽  
Joseph E Addiego ◽  
Donald C Reason ◽  
Alexander H Lucas

SummaryIn this study we sought to determine whether factor VUI-reactive T lymphocytes were present in hemophilia A patients with inhibitor antibodies. Peripheral blood mononuclear cells (MNC) were obtained from 12 severe hemophilia A patients having high titer inhibitors, 4 severe hemophilia A patients without inhibitors and 5 normal male subjects. B cell-depleted MNC were cultured in serum-free medium in the absence or presence of 2 µg of recombinant human factor VIII (rFVIII) per ml, and cellular proliferation was assessed after 5 days of culture by measuring 3H-thymidine incorporation. rFVIII induced marked cellular proliferation in cultures of 4 of 12 inhibitor-positive hemophilia patients: fold increase over background (stimulation index, SI) of 7.8 to 23.3. The remaining 8 inhibitor-positive patients, the 4 hemophilia patients without inhibitors and the 5 normal subjects, all had lower proliferative responses to rFVIII, SI range = 1.6 to 6.0. As a group, the inhibitor-positive subjects had significantly higher proliferative responses to rFVIII than did the inhibitor-negative and normal subjects (p < 0.05 by t-test). Cell fractionation experiments showed that T lymphocytes were the rFVIII-responsive cell type, and that monocytes were required for T cell proliferation. Thus, rFVIII-reactive T lymphocytes are present in the peripheral circulation of some inhibitor-positive hemophilia A patients. These T cells may recognize FVIII in an antigen-specific manner and play a central role in the regulation of inhibitor antibody production


2018 ◽  
Vol 25 (15) ◽  
pp. 1792-1804 ◽  
Author(s):  
Silvana R. Ferreira ◽  
Alicia B. Motta

Background: The endometrium is one of the most important female reproductive organs. Polycystic ovarian syndrome (PCOS) is a reproductive and endocrine pathology that affect women of reproductive age. PCOS negatively affects the endometrium, leading to implantation failure and proliferative aberrations. Methods: We conducted a search at the http://www.ncbi.nlm.nhi.gov/pubmed/electronic database using the following key words: endometrial steroid receptors, endometrium, uterine function, endometrium and PCOS, implantation window, implantation and PCOS, implantation markers, inflammation, oxidative stress. We selected the articles based on their titles and abstracts, then we analyzed the full text and classified the articles depending on the information provided according to the sections of the present review. Results: The endocrine and metabolic abnormalities displayed in women with PCOS promote complex effects on the endometrium, leading to a low rate of implantation and even infertility. Women with PCOS show alterations in the Hypothalamic-Pituitary- Ovarian axis, which results in constant circulating levels of estrogen, similar to those at the early follicular phase, and a deficiency in the withdrawal of estrogen and progesterone. Besides this deficiency in the withdrawal of estrogen and progesterone, the insulin/ glucose pathway, adhesion molecules, cytokines and the inflammatory cascade, together with the establishment of a pro-oxidative status, lead to an imbalance in the uterine function, which in turn leads to implantation failure or even endometrial cancer. Conclusion: Women with PCOS display a dysregulation of the Hypothalamic-Pituitary- Ovarian axis, which alters the steroid pathway. In addition, the deficiency in the withdrawal of estrogen and progesterone in the endometrium results in abnormal endometrial cellular proliferation. The imbalance in adipose tissue observed in PCOS patients reinforces the increase in circulating hormones. The present review describes the role of hormones, metabolites, cytokines, adhesion molecules and the insulin/glucose pathway related to the uterine endometrium in women with PCOS and their role in implantation failure and development of endometrial cancer.


2020 ◽  
Vol 26 (15) ◽  
pp. 1729-1741 ◽  
Author(s):  
Seyed H. Shahcheraghi ◽  
Venant Tchokonte-Nana ◽  
Marzieh Lotfi ◽  
Malihe Lotfi ◽  
Ahmad Ghorbani ◽  
...  

: Glioblastoma (GBM) is the most common and malignant astrocytic glioma, accounting for about 90% of all brain tumors with poor prognosis. Despite recent advances in understanding molecular mechanisms of oncogenesis and the improved neuroimaging technologies, surgery, and adjuvant treatments, the clinical prognosis of patients with GBM remains persistently unfavorable. The signaling pathways and the regulation of growth factors of glioblastoma cells are very abnormal. The various signaling pathways have been suggested to be involved in cellular proliferation, invasion, and glioma metastasis. The Wnt signaling pathway with its pleiotropic functions in neurogenesis and stem cell proliferation is implicated in various human cancers, including glioma. In addition, the PI3K/Akt/mTOR pathway is closely related to growth, metabolism, survival, angiogenesis, autophagy, and chemotherapy resistance of GBM. Understanding the mechanisms of GBM’s invasion, represented by invasion and migration, is an important tool in designing effective therapeutic interventions. This review will investigate two main signaling pathways in GBM: PI3K/Akt/mTOR and Wnt/beta-catenin signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document