Correlation between electrochemical impedance measurements and corrosion rates of Mg-1Ca alloy in simulated body fluid

2018 ◽  
Vol 264 ◽  
pp. 101-108 ◽  
Author(s):  
Yuxiang Liu ◽  
Michele Curioni ◽  
Zhu Liu
RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 80275-80285 ◽  
Author(s):  
Bhavana Rikhari ◽  
S. Pugal Mani ◽  
N. Rajendran

In the present work, dynamic electrochemical impedance spectroscopy (DEIS) was used to investigate the corrosion behavior of polypyrrole (PPy)-coated titanium (Ti) in simulated body fluid (SBF) solution.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 903 ◽  
Author(s):  
El-Sayed M. Sherif ◽  
Sameh A. Ragab ◽  
Hany S. Abdo

The manufacturing of different Ti-6Al-xV (x = 2, 4, 6, and 8 wt.%) alloys using a mechanical alloying technique was reported. The corrosion behaviors of these newly fabricated alloys after 1, 24, and 48 h exposure to a simulated body fluid (SBF) were assessed using cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and chronoamperometric measurements. Surface morphology and elemental analyses after corrosion for 48 h in SBF were reported using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) examinations. An X-ray diffraction investigation characterized the phase analyses. All results indicated that the increase of V content significantly decreases both uniform and pitting corrosion. This effect also increases with prolonging the immersion time to 48 h before measurement.


2012 ◽  
Vol 66 (2) ◽  
pp. 187-192
Author(s):  
Rade Surudzic ◽  
Sanja Erakovic ◽  
Vesna Miskovic-Stankovic

In order to improve corrosion stability and biocompatibility of titanium surfaces, hydroxyapatite (Ca10(PO4)6(OH)2, HAP) has been used as coating material due to the fact that it possess similar chemical composition as bone tissue. Lignin?s (Lig) usage in medical applications could be interesting because it could lead to thermal stability, hydrophilicity, biocompatibility and biodegradability of different materials. Bioceramic hydroxyapatite/lignin (HAP/Lig) coatings on titanium were obtained from ethanol suspension by electrophoretic deposition method. The uniform and compact HAP/Lig coatings were deposited at constant voltage of 60 V for 45 s and sintered at 900?C in argon atmosphere. The corrosion stability of sintered HAP/Lig coatings in simulated body fluid (SBF) at 37?C was investigated by open circuit potential-time measurements and electrochemical impedance spectroscopy (EIS). The greater values of open circuit potential, as well as EIS results, indicated improved corrosion resistance and good corrosion stability of HAP/Lig coatings in simulated body fluid at 37?C .


2015 ◽  
Vol 6 (1) ◽  
pp. 33 ◽  
Author(s):  
L. J. Reyes Jaimes ◽  
H. A. González Romero ◽  
A. Sandoval Amadora ◽  
D. Y. Peña Ballesteros ◽  
H. A. Estupiñán Durán

ResumenSe evaluó el efecto del pH de fluido corporal simulado en la formación de apatitas y en la degradación de superficies de la aleación Ti6Al4V recubiertas con Fosfato de Calcio mediante la técnica de lectrodeposición catódica. Como variables de estudio se tomaron el pH del fluido corporal simulado y el tiempo de inmersión de los recubrimientos. Mediante microscopia electrónica de barrido, espectroscopia de energía dispersiva, difracción de rayos X y absorción atómica se pudo corroborar la formación de apatitas, y la degradación de los recubrimientos se evaluó mediante Espectroscopia de impedancia electroquímica y curvas de polarización potenciodinámicas. Los resultados obtenidos muestran que los recubrimientos tenían altas concentraciones de Fluorapatita (Ca5(PO4)3F) y que su formación se ve favorecida a medida que el pH del fluido corporal simulado y el tiempo de inmersión aumenta. Por otra parte, se obtuvo que las muestras evaluadas a pH de 7,2 son menos estables termodinámicamente, sin embargo, las evaluadas a 7,6 presentan una superficie más activa, por lo que se obtiene una mayor velocidad de degradación. AbstractThe pH eect of a Simulated Body Fluid in the apatite formation and the degradation of the Ti6Al4V alloy surfaces, coated by calcium phosphate obtained through cathodic electrodeposition was evaluated. The simulated body fluid pH and the coating immersion time were taken as variables. The formation of apatite was corroborated by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X Ray Diraction and Atomic Absorption Techniques. The coating degradation was assessed by the Electrochemical Impedance Spectroscopy and the Potential Dynamic Polarization Curves. The results have shown that the coatings had high concentrations of fluorapatite (Ca5(PO4)3F) and its formation was favored as the simulated body fluid pH and the immersion time increases. Moreover, it was found that the coatings samples evaluated at pH 7.2 were less thermodynamically steady, however, the evaluated coating at pH 7.6 exhibited a more active surface, so that a higher rate of degradation is obtained.


2020 ◽  
Vol 16 (5) ◽  
pp. 779-792
Author(s):  
Ahlam M. Fathi ◽  
Howida S. Mandour ◽  
Hanaa K. Abd El-Hamid

Background: Increasing the bioactivity of metallic implants is necessary for biomaterial applications where hydroxyapatite (HA) is used as a surface coating. In industry, HA is currently coated by plasma spraying, but this technique has a high cost and produces coating with short-term stability. Objectives: In the present study, electrophoretic deposition (EPD) was used to deposit nano-biphasic calcium phosphate compound (β-tri-calcium phosphate (β-TCP) /hydroxyapatite (HA)) bio-ceramics on the titanium surface. The microstructural, chemical compositions and bioactivity of the β- TCP/HA coatings were studied in a simulated body fluid solution (SBF). Methods: Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) were used. Additionally, the antibacterial effect was studied by the agar diffusion method. The corrosion behavior of the β-TCP/HA coating on titanium surface (Ti) in the SBF solution at 37oC was investigated by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. Results: The Ti surface modification increased its biocompatibility and corrosion resistance in the simulated body fluid. The antibacterial inhibition activity of the β-TCP/HA bio-ceramic was enhanced by electroless silver deposition. The enhanced properties could be attributed to the use of nano-sized biphasic calcium phosphates in a low-temperature EPD process. Conclusions: The β-TCP/HA and β-TCP/HA/Ag coatings well protect Ti from the corrosion in SBF and endow Ti with biocompatibility. The β-4-TCP/HA/Ag/Ti substrate shows good antibacterial activity.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 659
Author(s):  
Rebeka Rudolf ◽  
Aleš Stambolić ◽  
Aleksandra Kocijan

Nitinol is a group of nearly equiatomic alloys composed of nickel and titanium, which was developed in the 1970s. Its properties, such as superelasticity and Shape Memory Effect, have enabled its use, especially for biomedical purposes. Due to the fact that Nitinol exhibits good corrosion resistance in a chloride environment, an unusual combination of strength and ductility, a high tendency for self-passivation, high fatigue strength, low Young’s modulus and excellent biocompatibility, its use is still increasing. In this research, Atomic Layer Deposition (ALD) experiments were performed on a continuous vertical cast (CVC) NiTi rod (made in-house) and on commercial Nitinol as the control material, which was already in the rolled state. The ALD deposition of the TiO2 layer was accomplished in a Beneq TFS 200 system at 250 °C. The pulsing times for TiCl4 and H2O were 250 ms and 180 ms, followed by appropriate purge cycles with nitrogen (3 s after the TiCl4 and 2 s after the H2O pulses). After 1100 repeated cycles of ALD depositing, the average thickness of the TiO2 layer for the CVC NiTi rod was 52.2 nm and for the commercial Nitinol, it was 51.7 nm, which was confirmed by X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM) using Energy-dispersive X-ray (EDX) spectroscopy. The behaviour of the CVC NiTi and commercial Nitinol with and without the TiO2 layer was investigated in a simulated body fluid at body temperature (37 °C) to explain their corrosion resistance. Potentiodynamic polarisation measurements showed that the lowest corrosion current density (0.16 μA/cm2) and the wider passive region were achieved by the commercial NiTi with TiO2. Electrochemical Impedance Spectroscopy measurements revealed that the CVC NiTi rod and the commercial Nitinol have, for the first 48 h of immersion, only resistance through the oxide layer, as a consequence of the thin and compact layer. On the other hand, the TiO2/CVC NiTi rod and TiO2/commercial Nitinol had resistances through the oxide and porous layers the entire immersion time since the TiO2 layer was formatted on the surfaces.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 724 ◽  
Author(s):  
Ze-Xin Wang ◽  
Guan-Qun Chen ◽  
Liang-Yu Chen ◽  
Lei Xu ◽  
Sheng Lu

Bio-ceramic coatings were synthesized on ZK60 magnesium alloys by micro-arc oxidation (MAO). The degradation behavior of the ZK60 alloys with and without MAO coating in the simulated body fluid (SBF) was studied. The samples were characterized by means of scanning electron microscopy (SEM), laser scanning confocal microscopy (CLSM), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to study the degradation behavior. The results showed that the porous MAO coating mainly consisted of MgO, Mg2SiO4, Mg3(PO4)2, and CaCO3. The pH values of both coated and uncoated samples increased over time. However, the pH values of the SBF for coated samples always maintained a lower level compared with those for the uncoated samples. Thereby, the coated samples showed a much lower degradation rate. After immersion in SBF for 5 days, corrosion product containing Ca and P was found on both samples, while the deposition was more active on the coated samples. The degradation models for the uncoated and coated samples in the SBF are also proposed and discussed.


2008 ◽  
Vol 396-398 ◽  
pp. 393-396 ◽  
Author(s):  
D. Ionita ◽  
Doina Raducanu ◽  
Mariana Prodana ◽  
Ioana Demetrescu

The paper is an electrochemical study regarding the influence of different acid etching conditions on the corrosion behaviour of a new Ti based bioalloy with Nb, Ta and Zr. Open circuit, potentiodynamic and electrochemical impedance spectroscopy were the methods performed in a simulated body fluid (SBF) and a stability mechanism was discussed in terms of equivalent circuits.


Sign in / Sign up

Export Citation Format

Share Document