Closed-form moment-curvature relations for reinforced concrete cross sections under bending moment and axial force

2016 ◽  
Vol 129 ◽  
pp. 67-80 ◽  
Author(s):  
Pedro Dias Simão ◽  
Helena Barros ◽  
Carla Costa Ferreira ◽  
Tatiana Marques
Author(s):  
Oleksandr Semko ◽  
◽  
Аnton Hasenkо ◽  
Aleksey Fenkо ◽  
J Godwin Emmanuel B. Arch. ◽  
...  

The article describes the influence of overall dimensions, namely the ratio of lifting height to the span of the triangular reinforced concrete arch of the coating, to the change in internal forces in its cross sections. The change of axial force in steel rods and reinforced concrete half-panels and the change of bending moment in reinforced concrete half-panels depending on the angle of inclination of roof are determined. According to the obtained values of the effort, the required diameters of the working reinforcement and its cost are determined.


2021 ◽  
Vol 98 (6) ◽  
pp. 5-19
Author(s):  
VL.I. KOLCHUNOV ◽  
◽  
O.I. AL-HASHIMI ◽  
M.V. PROTCHENKO ◽  
◽  
...  

The authors developed a model for single reinforced concrete strips in block wedge and arches between inclined cracks and approximated rectangular cross-sections using small squares in matrix elements. From the analysis of the works of N.I. Karpenko and S.N. Karpenko the "nagel" forces in the longitudinal tensile reinforcement and crack slip , as a function of the opening width and concrete deformations in relation to the cosine of the angle . The experimental " nagel " forces and crack slip dependences for the connection between and in the form of an exponent for the reinforcement deformations and spacing are determined. The forces have been calculated for two to three cross-sections (single composite strips) of reinforced concrete structures. On the bases of accepted hypothesis, a new effect of reinforced concrete and a joint modulus in a strip of composite single local shear zone for the difference of mean relative linear and angular deformations of mutual displacements of concrete (or reinforcement) are developed. The hypothesis allows one to reduce the order of the system of differential equations of Rzhanitsyn and to obtain in each joint the total angular deformations of concrete and the "nagel" effect of reinforcement. The curvature of the composite bars has a relationship from the total bending moment of the bars to the sum of the rigidities. The stiffness physical characteristics of the matrix from the compressed concrete area and the working reinforcement are obtained in a system of equations of equilibrium and deformation, as well as physical equations.


2016 ◽  
Vol 8 (3) ◽  
pp. 94-100
Author(s):  
Andrius Grigusevičius ◽  
Gediminas Blaževičius

The aim of this paper is to present a solution algorithm for determining the frame element crosssection carrying capacity, defined by combined effect of bending moment and axial force. The distributions of stresses and strains inside a cross-section made of linearly hardening material are analysed. General nonlinear stress-strain dependencies are composed. All relations are formed for rectangular cross-section for all possible cases of combinations of axial force and bending moment. To this end, five different stress-strain states are investigated and four limit axial force values are defined in the present research. The nonlinear problem is solved in MATLAB mathematical software environment. Stress-strain states in the cross-sections are investigated in detail and graphically analysed for two numerical experiments.


2011 ◽  
Vol 94-96 ◽  
pp. 99-104
Author(s):  
Zhang Wei ◽  
Chuan Xiong Fu ◽  
Lu Feng Yang ◽  
Jin Zhang

he steel lined reinforced concrete penstocks (SLRCP) is always looked as an axisymmetric structure according to the design code, which can not show the true load-carrying capacity when considering the dam’s constraint to the SLRCP. In this paper, the physical non-axisymmetric property of the structure is simulated using the finite element method. The internal force distribution of every cross section in the SLRCP is studied, and a design method for steel arrangement based on axial force is proposed. When considering the non-axisymmetric property, the axial force in those cross sections approaching the bottom of the structure may be reduced more than 30% to the calculated value by the axisymmetric analysis. The larger the inner radius of the penstock or the thickness of the concrete wall is, the more marked the non-axisymmetric property of the SLRCP is.


Author(s):  
Se-Kwon Jung ◽  
Joseph Harrold ◽  
Nawar Alchaar

This paper presents a non-iterative reinforced concrete design methodology that can be used to design structural components such as beam-columns, walls and slabs of reinforced concrete structures subjected to combined axial force and bending moment. The paper demonstrates that the required reinforcing area of a demand point (paired axial force and bending moment) on the interaction diagram can be accurately computed by 1) constructing two non-dimensionalized capacity curves approximated by a combination of polygon segments that are expected to bound all possible design cases including the demand point, 2) dividing the area enclosed by the lower- and upper-bound capacity segments into several four-sided capacity polygons, 3) locating a capacity polygon where the demand point is located and identifying associated lower- and upper-bound capacity segments, 4) identifying a capacity segment that passes through the demand point by linear interpolation from the given two bounding segments, and finally 5) determining the required reinforcing area for the demand point by linear interpolation between the minimum and maximum reinforcing ratios associated with the pre-defined lower- and upper-bound capacity segments, respectively. This essentially eliminates a cumbersome need to perform iterative trial and error solutions to obtain the required reinforcing area for the combined axial force and moment concrete design. Illustrative design examples per ACI 349 and ACI 359 are presented within the paper.


Sign in / Sign up

Export Citation Format

Share Document