I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation

2020 ◽  
Vol 533 ◽  
pp. 116055 ◽  
Author(s):  
Wanyi Lu ◽  
Rosalind E.M. Rickaby ◽  
Babette A.A. Hoogakker ◽  
Anthony E. Rathburn ◽  
Ashley M. Burkett ◽  
...  
1991 ◽  
Vol 9 (2) ◽  
pp. 153-158 ◽  
Author(s):  
Kathryn A. Malmgren ◽  
Brian M. Funnell

Abstract. Benthic Foraminifera from middle to late Pleistocene, (c. 600ka to 0ka), sediments of ODP Hole 686B, off Peru, show highest abundances and diversities during periods of cooler surface waters, (inferred from the Uk37 index), and enhanced upwelling, (inferred from the peridinacean/gonyaulacacean dinoflagellate cyst ratio). During the latest Pleistocene, (c. 160ka to 0ka), these periods are characterised by higher organic carbon contents in the bottom sediments, and occur during the odd-numbered, interglacial_18O stages. The benthic Foraminifera indicate deposition in 120 to 250 metres water depth for the earlier part of the record, (c. 600ka to c. 200ka), within the oxygen-minimum zone, with bottom water oxygen contents of <0.5 to 0.2 ml/l, (inferred from the dominance of Bolivinellina humilis). Deposition in water depths approaching those of the present day, (c. 450 metres), is indicated from c. 160ka onwards, with better oxygenated bottom water conditions, probably corresponding to the lower part of the oxygen-minimum zone.


Author(s):  
Tanja Kuhnt ◽  
Oliver Friedrich ◽  
Gerhard Schmiedl ◽  
Yvonne Milker ◽  
Andreas Mackensen ◽  
...  

2009 ◽  
Vol 6 (7) ◽  
pp. 1273-1293 ◽  
Author(s):  
J. J. Middelburg ◽  
L. A. Levin

Abstract. The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal-induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification), there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis) with consequences for coastal ecosystem dynamics.


2021 ◽  
Author(s):  
Ricardo Monedero-Contreras ◽  
Francisca Martinez-Ruiz ◽  
Francisco J. Rodríguez-Tovar ◽  
David Gallego-Torres ◽  
Gert J. de Lange

1999 ◽  
Vol 36 (10) ◽  
pp. 1617-1643 ◽  
Author(s):  
Rebecca A Stritch ◽  
Claudia J Schröder-Adams

Albian foraminiferal assemblages from three wells in northwestern (Imperial Spirit River No. 1, 12-20-78-6W6), central (AngloHome C&E Fort Augustus No. 1, 7-29-55-21W4), and southern Alberta (Amoco B1 Youngstown, 6-34-30-8W4) provide the basis to track a fluctuating sea-level history in western Canada. Two global second-order marine cycles (Kiowa - Skull Creek and Greenhorn) were punctuated by higher frequency relative sea-level cycles expressed during the time of the Moosebar-Clearwater, Hulcross, Joli Fou, and Mowry seas. A total of 34 genera and 93 subgeneric taxa are recognized in these Albian-age strata. Foraminiferal abundance and species diversity of the latest Albian Mowry Sea were higher than in the early to middle Albian Moosebar-Clearwater and Hulcross seas. The two earliest paleo-seas were shallow embayments of the Boreal Sea, and relative sea-level fluctuations caused variable marine to brackish conditions expressed in a variety of faunal assemblages. Towards the late Albian, relative sea level rose, deepening the basin and establishing increased marine conditions and more favourable habitats for foraminifera. In the deeper Joli Fou Seaway and Mowry Sea, however, reduced bottom water oxygen through stratification or stagnant circulation caused times of diminished benthic faunas. The Bluesky Formation in northwestern Alberta contains the initial transgression of the early Albian Moosebar-Clearwater Sea and is marked by a sudden faunal increase. In contrast, transgression by the late late Albian Mowry Sea was associated with a gradual increase of foraminiferal faunas. Numerous agglutinated species range throughout the entire Albian, absent only at times of basin shallowing. However, each major marine incursion throughout the Albian introduced new taxa.


2020 ◽  
Vol 283 ◽  
pp. 54-66
Author(s):  
Elaine M. Mawbey ◽  
Katharine R. Hendry ◽  
Mervyn J. Greaves ◽  
Claus-Dieter Hillenbrand ◽  
Gerhard Kuhn ◽  
...  

Baltica ◽  
2020 ◽  
Vol 33 (1) ◽  
pp. 58-70
Author(s):  
Ekaterina Ponomarenko ◽  
Viktor Krechik ◽  
Evgenia Dorokhova

The Baltic Sea is characterized by a restricted exchange of deep waters due to permanent stratification of the water column. The aim of the present study is to investigate the distribution of benthic foraminifera in the south-eastern part of the Baltic Sea in relation to environmental parameters. The distribution of benthic foraminifera was analyzed in 26 surface sediment samples collected in the south-eastern part of the Baltic Sea and in the Bornholm Basin during springtime and wintertime 2016. Foraminiferal diversity in the studied region was extremely low. Agglutinated specimens dominated the assemblages and were represented by small-sized individuals which belong to Psammosphaera, Pseudothurammina, Saccammina, and Reophax genera. Calcareous foraminifera were dominated by Cribroelphidium genus. Micropaleontological data were compared to the environmental parameters characterizing bottom water (temperature, salinity, and dissolved oxygen content) and substrate conditions (grain size composition and total organic carbon content). Higher foraminiferal concentrations and diversity were found in deeper parts of the study region where fine-grained sediments with a higher total organic carbon content were accumulated under stable hydrographical conditions. Calcareous tests were found only at the stations with elevated salinity, indicating that bottom water salinity is the main factor limiting the distribution of calcareous foraminifera. On the other hand, substrate parameters and hydrodynamic conditions appear to play a major role in the distribution of agglutinated foraminifera.


2014 ◽  
Vol 8 (1) ◽  
pp. 40-43 ◽  
Author(s):  
Babette A. A. Hoogakker ◽  
Henry Elderfield ◽  
Gerhard Schmiedl ◽  
I. Nick McCave ◽  
Rosalind E. M. Rickaby

Sign in / Sign up

Export Citation Format

Share Document