Stochastic unit commitment of wind farms integrated in power system

2010 ◽  
Vol 80 (9) ◽  
pp. 1006-1017 ◽  
Author(s):  
H. Siahkali ◽  
M. Vakilian
2019 ◽  
Vol 11 (16) ◽  
pp. 4504 ◽  
Author(s):  
Mohammad Masih Sediqi ◽  
Mohammed Elsayed Lotfy ◽  
Abdul Matin Ibrahimi ◽  
Tomonobu Senjyu ◽  
Narayanan. K

This paper focuses on the optimal unit commitment (UC) scheme along with optimal power trading for the Northeast Power System (NEPS) of Afghanistan with a penetration of 230 MW of PV power energy. The NEPS is the biggest power system of Afghanistan fed from three main sources; 1. Afghanistan’s own power generation units (three thermal units and three hydro units); 2. imported power from Tajikistan; 3. imported power from Uzbekistan. PV power forecasting fluctuations have been handled by means of 50 scenarios generated by Latin-hypercube sampling (LHS) after getting the point solar radiation forecast through the neural network (NN) toolbox. To carry out the analysis, we consider three deterministic UC and two stochastic UC cases with a two-stage programming model that indicates the day-ahead UC as the first stage and the intra-day operation of the system as the second stage. A binary-real genetic algorithm is coded in MATLAB software to optimize the proposed cases in terms of thermal units’ operation costs, import power tariffs, as well as from the perspective of the system reliability risks expressed as the reserve and load not served costs. The results indicate that in the deterministic UC models, the risk of reserve and load curtailment does exist. The stochastic UC approaches including the optimal power trading are superior to the deterministic ones. Moreover, the scheduled UC costs and reserves are different from the actual ones.


2019 ◽  
Vol 34 (1) ◽  
pp. 140-151 ◽  
Author(s):  
Ershun Du ◽  
Ning Zhang ◽  
Bri-Mathias Hodge ◽  
Qin Wang ◽  
Zongxiang Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document