ensemble prediction
Recently Published Documents


TOTAL DOCUMENTS

958
(FIVE YEARS 291)

H-INDEX

71
(FIVE YEARS 8)

2022 ◽  
Vol 22 (1) ◽  
pp. 577-596
Author(s):  
Susan J. Leadbetter ◽  
Andrew R. Jones ◽  
Matthew C. Hort

Abstract. Atmospheric dispersion model output is frequently used to provide advice to decision makers, for example, about the likely location of volcanic ash erupted from a volcano or the location of deposits of radioactive material released during a nuclear accident. Increasingly, scientists and decision makers are requesting information on the uncertainty of these dispersion model predictions. One source of uncertainty is in the meteorology used to drive the dispersion model, and in this study ensemble meteorology from the Met Office ensemble prediction system is used to provide meteorological uncertainty to dispersion model predictions. Two hypothetical scenarios, one volcanological and one radiological, are repeated every 12 h over a period of 4 months. The scenarios are simulated using ensemble meteorology and deterministic forecast meteorology and compared to output from simulations using analysis meteorology using the Brier skill score. Adopting the practice commonly used in evaluating numerical weather prediction (NWP) models where observations are sparse or non-existent, we consider output from simulations using analysis NWP data to be truth. The results show that on average the ensemble simulations perform better than the deterministic simulations, although not all individual ensemble simulations outperform their deterministic counterpart. The results also show that greater skill scores are achieved by the ensemble simulation for later time steps rather than earlier time steps. In addition there is a greater increase in skill score over time for deposition than for air concentration. For the volcanic ash scenarios it is shown that the performance of the ensemble at one flight level can be different to that at a different flight level; e.g. a negative skill score might be obtained for FL350-550 and a positive skill score for FL200-350. This study does not take into account any source term uncertainty, but it does take the first steps towards demonstrating the value of ensemble dispersion model predictions.


2022 ◽  
Author(s):  
Jie Li ◽  
Xin Li ◽  
John Hutchinson ◽  
Mohammad Asad ◽  
Yadong Wang ◽  
...  

Background: It's critical to identify COVID-19 patients with a higher death risk at early stage to give them better hospitalization or intensive care. However, thus far, none of the machine learning models has been shown to be successful in an independent cohort. We aim to develop a machine learning model which could accurately predict death risk of COVID-19 patients at an early stage in other independent cohorts. Methods: We used a cohort containing 4711 patients whose clinical features associated with patient physiological conditions or lab test data associated with inflammation, hepatorenal function, cardiovascular function and so on to identify key features. To do so, we first developed a novel data preprocessing approach to clean up clinical features and then developed an ensemble machine learning method to identify key features. Results: Finally, we identified 14 key clinical features whose combination reached a good predictive performance of AUC 0.907. Most importantly, we successfully validated these key features in a large independent cohort containing 15,790 patients. Conclusions: Our study shows that 14 key features are robust and useful in predicting the risk of death in patients confirmed SARS-CoV-2 infection at an early stage, and potentially useful in clinical settings to help in making clinical decisions.


MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 1-12
Author(s):  
M. MOHAPATRA ◽  
B.K. BANDYOPADHYAY ◽  
D.R. SIKKA ◽  
AJIT TYAGI

Cakxky dh [kkM+h esa m".kdfVca/kh; rwQkuksa ds ekxZ vkSj mudh rhozrk ds iwokZuqeku rduhd esa lq/kkj ykus ds fy, iwokZuqeku fun’kZu ifj;kstuk ¼,Q-Mh-ih-½ uked ,d dk;ZØe rS;kj fd;k x;k gSA ,Q-Mh-ih- dk;ZØe dk mÌs’;] ftu {ks=ksa ls vk¡dM+s vO;ofLFkr :i  ls izkIr gksrs gSa ogk¡ muds loaf/kZr izs{k.kksa ds lkFk gh lkFk mRrjh fgUn egklkxj esa pØokrksa ds mRiUu gksus] muds rhoz gksus vkSj mudh xfr dk vkdyu djus ds fy, fofHkUu l[;kRed ekSle iwokZuqeku ¼,u- MCY;w- ih-½ fun’kksZ dh {kerk dk izn’kZu djuk rFkk fo’ks"k :i  ls caxky dh [kkM+h ls lacaf/kr  ogha mlh LFkku ij fy, x, ekiksa ds vk/kkj ij fun’kksZ esa lq/kkj djuk gSA ,Q-Mh-ih- dk;ZØe rhu pj.kksa esa fu/kkfjr fd;k x;k gS uker% ¼i½ izh&ikbyV pj.k ¼15 vDrwcj ls 30 uoacj 2008] 2009½] ¼ii½ ikbyV pj.k ¼15 vDrwcj ls 30 uoacj 2010&2012½ rFkk ¼iii½ vafre pj.k ¼15 vDrwcj ls 30 uoacj 2013&2014½A Hkkjr] fdjk, ds gokbZ tgkt vkSj MªkWilkSansa iz;ksxksa ls 15 vDrwcj ls 30 uoacj 2013&2014 ds nkSjku caxky dh [kkM+h esa cuus okys pØokrksa dk gokbZ tgkt ds tfj, irk yxkus dh ;kstuk cuk jgk gSA bl mÌs’; ds iwfrZ ds fy, ¼i½ izs{k.kkRed mUu;u ¼ii½ pØokr fo’ys"k.k vkSj iwokZuqeku iz.kkyh dk vk/kqfudhdj.k ¼iii½ pØokr fo’ys"k.k vkSj iwokZuqeku izfØ;k ¼iv½ psrkouh mRiknksa dks rS;kj djuk] mudk izLrqrhdj.k rFkk izlj.k ¼v½ fo’oluh;rk mik; vkSj {kerk fuekZ.k ij izkFkfedrk ds vk/kkj ij dk;Z fd, x,A pØokr ds izs{k.k] fo’ys"k.k vkSj iwokZuqeku esa lq/kkj ykus ds fy, fofHkUu dk;Z iz.kkfy;k¡ viukbZ xbZaA o"kZ 2008&11 ds nkSjku ,Q-Mh-ih- vfHk;ku ds izh&ikbyV vkSj ikbyV pj.kksa esa la;qDr izs{k.kkRed] lapkjkRed vkSj ,u-MCY;w-ih- xfrfof/k;ksa esa vusd jk"Vªh; laLFkkuksa us Hkkx fy;kA ,Q-Mh-ih- ds igys vkSj mlds ckn dh izs{k.kkRed iz.kkfy;ksa dh rqyuk ls {ks= esa jsMkj] Lopkfyr ekSle dsUnz ¼,- MCY;w-,l-½] mPp iou xfr fjdkWMjksa esa egRoiw.kZ lq/kkj dk irk pyk gSA bl lq/kkj ls ekWuhVju vkSj iwokZuqeku esa gksus okyh =qfV;ksa esa deh vkbZ gSA th- ,Q- ,l- MCY;w vkj- ,Q] ,p- MCY;w- vkj- ,Q- vkSj vlsEcy iwokZuqeku iz.kkyh ¼bZ- ih- ,l-½  ds vkjaHk gksus ls ,u- MCY;w- ih- funsZ’kksa ds dk;Z fu"iknu esa o`f) gqbZ gSA bl 'kks/k i= esa bl ifj;kstuk dh miyfC/k;ksa ds egRoiw.kZ y{k.kksa lfgr leL;kvksa vkSj laHkkoukvksa dks izLrqr fd;k x;k gS rFkk mudh foospuk dh xbZ gSA pØokrksa dk gokbZ tgkt }kjk irk yxkus ds fy, ckj&ckj fd, x, iz;klksa ds ckotwn ;g dk;Z vHkh laHko ugha gks ldk gSA o"kZ 2013&14 ds nkSjku Hkkoh vfHk;ku ds le; ;g ,d eq[; pqukSrh gksxhA A programme has been evolved for improvement in prediction of track and intensity of tropical cyclones over the Bay of Bengal resulting in the Forecast Demonstration Project (FDP). FDP programme is aimed to demonstrate the ability of various Numerical Weather Prediction (NWP) models to assess the genesis, intensification and movement of cyclones over the north Indian ocean with enhanced observations over the data sparse region and to incorporate modification into the models which could be specific to the Bay of Bengal based on the in-situ measurements. FDP Programme is scheduled in three phases, viz., (i) Pre-pilot phase (15 Oct - 30 Nov 2008, 2009, (ii) Pilot phase (15 Oct - 30 Nov, 2010-2012) and (iii) Final phase (15 Oct - 30 Nov, 2013-14). India is planning to take up aircraft probing of cyclones over the Bay of Bengal during 15 Oct - 30 Nov, 2013-14 with hired aircraft and dropsonde experiments. To accomplish the above objective, the initiative was carried out with priorities on (i) observational upgradation, (ii) modernisation of cyclone analysis and prediction system, (iii) cyclone analysis and forecasting procedure, (iv) warning products generation, presentation & dissemination, (v) confidence building measures and capacity building. Various strategies were adopted for improvement of observation, analysis and prediction of cyclone. Several national institutions participated for joint observational, communicational & NWP activities during the pre-pilot and pilot phases of FDP campaign during 2008-11. The comparison of observational systems before and after FDP indicates a significant improvement in terms of Radar, Automatic Weather Station (AWS), high wind speed recorders over the region. It has resulted in reduction in monitoring and forecasting errors. The performance of NWP models have increased along with the introduction of NWP platforms like IMD GFS, WRF, HWRF and ensemble prediction system (EPS). Salient features of achievements along with the problems and prospects of this project are presented and discussed in this paper. With repeated attempts, the aircraft probing of cyclones could not be possible till now. It is a major challenge for the future campaign during 2013-14.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Ensemble selection is a crucial problem for ensemble learning (EL) to speed up the predictive model, reduce the storage space requirements and to further improve prediction accuracy. Diversity among individual predictors is widely recognized as a key factor to successful ensemble selection (ES), while the ultimate goal of ES is to improve its predictive accuracy and generalization of the ensemble. Motivated by the problems stated in previous, we have devised a novel hybrid layered based greedy ensemble reduction (HLGER) architecture to delete the predictor with lowest accuracy and diversity with evaluation function according to the diversity metrics. Experimental investigations are conducted based on benchmark time series data sets, support vectors regression algorithm utilized as base learner to generate homogeneous ensemble, HLGER uses locally weight ensemble (LWE) strategies to provide a final ensemble prediction. The experimental results demonstrate that, in comparison with benchmark ensemble pruning techniques, HLGER achieves significantly superior generalization performance.


MAUSAM ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 479-496
Author(s):  
V.R. DURAI ◽  
S.K.ROY BHOWMIK ◽  
Y.V.RAMA RAO ◽  
RASHMI BHARDWAJ

2021 ◽  
Vol 13 (24) ◽  
pp. 5174
Author(s):  
Magfira Syarifuddin ◽  
Susanna F. Jenkins ◽  
Ratih Indri Hapsari ◽  
Qingyuan Yang ◽  
Benoit Taisne ◽  
...  

Tephra plumes can cause a significant hazard for surrounding towns, infrastructure, and air traffic. The current work presents the use of a small and compact X-band multi-parameter (X-MP) radar for the remote tephra detection and tracking of two eruptive events at Merapi Volcano, Indonesia, in May and June 2018. Tephra detection was performed by analysing the multiple parameters of radar: copolar correlation and reflectivity intensity factor. These parameters were used to cancel unwanted clutter and retrieve tephra properties, which are grain size and concentration. Real-time spatial and temporal forecasting of tephra dispersal was performed by applying an advection scheme (nowcasting) in the manner of an ensemble prediction system (EPS). Cross-validation was performed using field-survey data, radar observations, and Himawari-8 imageries. The nowcasting model computed both the displacement and growth and decaying rate of the plume based on the temporal changes in two-dimensional movement and tephra concentration, respectively. Our results are in agreement with ground-based data, where the radar-based estimated grain size distribution falls within the range of in situ grain size. The uncertainty of real-time forecasted tephra plume depends on the initial condition, which affects the growth and decaying rate estimation. The EPS improves the predictability rate by reducing the number of missed and false forecasted events. Our findings and the method presented here are suitable for early warning of tephra fall hazard at the local scale.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1688
Author(s):  
Chin-Cheng Tsai ◽  
Jing-Shan Hong ◽  
Pao-Liang Chang ◽  
Yi-Ru Chen ◽  
Yi-Jui Su ◽  
...  

Surface wind speed forecast from an operational WRF Ensemble Prediction System (WEPS) was verified, and the system-bias representations of the WEPS were investigated. Results indicated that error characteristics of the ensemble 10-m wind speed forecast were diurnally variated and clustered with the usage of the planetary boundary layer (PBL) scheme. To correct the error characteristics of the ensemble wind speed forecast, three system-bias representations with decaying average algorithms were studied. One of the three system-bias representations is represented by the forecast error of the ensemble mean (BC01), and others are assembled from each PBC group (BC03) as well as an independent member (BC20). System bias was calculated daily and updated within a 5-month duration, and the verification was conducted in the last month, including 316 gauges around Taiwan. Results show that the mean of the calibrated ensemble (BC03) was significantly improved as the calibrated ensemble (BC20), but both demonstrated insufficient ensemble spread. However, the calibrated ensemble, BC01, with the best dispersion relation could be extracted as a more valuable deterministic forecast via the probability matched mean method (PMM).


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1643
Author(s):  
Hee-Wook Choi ◽  
Yeon-Hee Kim ◽  
Keunhee Han ◽  
Chansoo Kim

Wind shear can occur at all flight levels; however, it is particularly dangerous at low levels, from the ground up to approximately 2000 feet. If this phenomenon can occur during the take-off and landing of an aircraft, it may interfere with the normal altitude change of the aircraft, causing delay and cancellation of the aircraft, as well as economic damage. In this paper, to estimate the probabilistic forecasts of low-level wind shear at Gimpo, Gimhae, Incheon and Jeju International Airports, an Ensemble Model Output Statistics (EMOS) model based on a left-truncated normal distribution with a cutoff zero was applied. Observations were obtained from Gimpo, Gimhae, Incheon and Jeju International Airports and 13 ensemble member forecasts generated from the Limited-Area Ensemble Prediction System (LENS), for the period December 2018 to February 2020. Prior to applying to EMOS models, statistical consistency was analyzed by using a rank histogram and kernel density estimation to identify the uniformity of ensembles with corresponding observations. Performances were evaluated by mean absolute error, continuous ranked probability score and probability integral transform. The results showed that probabilistic forecasts obtained from the EMOS model exhibited better prediction skills when compared to the raw ensembles.


Sign in / Sign up

Export Citation Format

Share Document