Text stream clustering algorithm based on adaptive feature selection

2011 ◽  
Vol 38 (3) ◽  
pp. 1393-1399 ◽  
Author(s):  
Linghui Gong ◽  
Jianping Zeng ◽  
Shiyong Zhang
2021 ◽  
Vol 1738 ◽  
pp. 012078
Author(s):  
Yaxuan Cui ◽  
Kunjie Luo ◽  
Zheyu Zhang ◽  
Saijia Liu

Author(s):  
Abbas F. H. Alharan ◽  
Hayder K. Fatlawi ◽  
Nabeel Salih Ali

<p>Computer vision and pattern recognition applications have been counted serious research trends in engineering technology and scientific research content. These applications such as texture image analysis and its texture feature extraction. Several studies have been done to obtain accurate results in image feature extraction and classifications, but most of the extraction and classification studies have some shortcomings. Thus, it is substantial to amend the accuracy of the classification via minify the dimension of feature sets. In this paper, presents a cluster-based feature selection approach to adopt more discriminative subset texture features based on three different texture image datasets. Multi-step are conducted to implement the proposed approach. These steps involve texture feature extraction via Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and Gabor filter. The second step is feature selection by using K-means clustering algorithm based on five feature evaluation metrics which are infogain, Gain ratio, oneR, ReliefF, and symmetric. Finally, K-Nearest Neighbor (KNN), Naive Bayes (NB) and Support Vector Machine (SVM) classifiers are used to evaluate the proposed classification performance and accuracy. Research achieved better classification accuracy and performance using KNN and NB classifiers that were 99.9554% for Kelberg dataset and 99.0625% for SVM in Brodatz-1 and Brodatz-2 datasets consecutively. Conduct a comparison to other studies to give a unified view of the quality of the results and identify the future research directions.</p>


Author(s):  
Mustansar Fiaz ◽  
Md. Maklachur Rahman ◽  
Arif Mahmood ◽  
Sehar Shahzad Farooq ◽  
Ki Yeol Baek ◽  
...  

2017 ◽  
Vol 37 (5) ◽  
pp. 0515001 ◽  
Author(s):  
沈 秋 Shen Qiu ◽  
严小乐 Yan Xiaole ◽  
刘霖枫 Liu Linfeng ◽  
孔繁锵 Kong Fanqiang ◽  
王丹丹 Wang Dandan

Sign in / Sign up

Export Citation Format

Share Document