water inrush
Recently Published Documents


TOTAL DOCUMENTS

708
(FIVE YEARS 344)

H-INDEX

28
(FIVE YEARS 8)

Author(s):  
Xiaoyan Zhang ◽  
Qiang Wu ◽  
Yingwang Zhao ◽  
Shouqiang Liu ◽  
Hua Xu

Abstract Water inrush accidents seriously threaten underground mining production, so the accurate prediction of the spreading process of water inrush is essential for the formulation of water-inrush-control plans and rescue schemes. This paper proposes a spatiotemporal model based on pipe-flow theory to simulate the spreading process of water inrush in mine roadway networks. The energy-loss term is added to this model to improve the simulation accuracy in bifurcated roadways, and pumps and water-blocking equipment are considered in controlling the spreading process of water inrush. Through experimental case studies, the simulation results and the function of the energy-loss term are verified. A sensitivity analysis is then carried out to assess the impact of the model parameters. The results show that the model outputs are most sensitive to the roadway length, cross-section width, and energy-loss coefficient. The model exhibited maximal sensitivity to the geometric parameters compared with the hydraulic parameters. Furthermore, the spreading process of a real water inrush in a coal mine in North China is simulated, and the water-inrush-control measures are evaluated. The overall results indicate that the proposed spatiotemporal model accurately predicts the spreading process of water inrush and is thus applicable to large-scale mine roadway networks.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 169
Author(s):  
Yuliang Wang ◽  
Guiyi Wu ◽  
Yang Liu ◽  
Zhanbo Cheng

The overlying strata layers of coal workfaces with karst aquifer water normally causes serious safety problems due to the precipitation, drainage and water inrush, such as a wide range and long term of surface subsidence. In this study, by taking 10,301 working faces of the Daojiao coal mine in Guizhou Province as the engineering background, the numerical model of water-bearing strata with fluid-solid coupling was established by using UDEC to illustrate the laws of overlying strata movement and surface subsidence. A theory model was proposed to calculate the surface settlement caused by the drainage of aquifer based on the principle of effective stress modified by the Biot coefficient αb. The results showed that the corresponding maximum value (0.72 m) and the range of the surface subsidence with the occurrence of karst aquifer water were larger than that of the overlying strata without karst aquifer water (e.g., the maximum value of surface subsidence with 0.1 m). Moreover, the surface subsidence caused by the drainage of aquifer accounted for 17.8% of the total surface subsidence caused by coal mining. According to the field monitoring of surface subsidence in 10,301 working faces, the maximum value was 0.74 m, which was highly consistent with the results of numerical simulation and theoretical analysis. It verified the accuracy and reliability of the numerical model and the theory model in this study.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Daiming Hu ◽  
Bülent Tezkan ◽  
Mingxin Yue ◽  
Xiaodong Yang ◽  
Xiaoping Wu ◽  
...  

Water inrush in tunneling poses serious harm to safe construction, causing economic losses and casualties. The prediction of water hazards before tunnel excavations becomes an urgent task for governments or enterprises to ensure security. The three-dimensional (3D) direct current (DC) resistivity method is widely used in the forward-probing of tunnels because of its low cost and highly sensitive response to water-bearing structures. However, the different sizes of the tunnel will distort the distribution of the potential field, which causes an inaccurate prediction of water-bearing structures in front of the tunnels. Some studies have pointed out that the tunnel effect must be considered in the quantitative interpretation of the data. However, there is rarely a predicted model considering the tunnel effect to be reported in geophysical literature. We developed a predicted model algorithm by considering the tunnel effect for forward-probing in tunnels. The algorithm is proven to be feasible using a slab analytic model. By simulating a large number of models with different tunnel sizes, we propose an equation, which considers the tunnel effect and can predict the water-bearing structures ahead of the tunnel face. The Monte Carlo method is used to evaluate the quality of the predicted model by simulating and comparing 10,000 random models. The results show that the proposed method is accurate to forecast the water-rich structures with small errors.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Qiang Wu ◽  
Xiao Wang ◽  
Yingwang Zhao ◽  
Hua Xu ◽  
Xiaoyan Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiaoqiang Zhang ◽  
Bolin Hu ◽  
Jiaxing Zou ◽  
Chuandong Liu ◽  
Yuanfan Ji

The overburden rock mining fissures are the main cause of coal spontaneous combustion, gas pooling, and mine water inrush caused by goaf air leakage. Rapid and accurate determination of the development and evolution law of mining fissures have great significance for the application of coal spontaneous combustion prevention and control, gas disaster prevention and control, and water damage prevention and control measures. In this paper, a preliminary judgment of the development height of the water-conducting fracture zone is made based on the theoretical analysis, and the physical model size of the numerical simulation is determined according to its judgment result. It is judged that the development height of its water-conducting fracture zone is between 49 and 64.2 m, which is in line with the actual results. Based on this, a three-dimensional solid model was established in PFC (Particle Flow Code) software to analyze the fissure development pattern of the overburden rock and the development height of the water-conducting fracture zone when the main key stratum of the rock seam is in different positions by simulating the excavation process of the coal seam. The results show that when the main key stratum is located in the “original crack belt boundary,” the development of water-conducting fracture zone is significantly inhibited; when the main key stratum is located in the “original caving zone,” the water-conducting fracture zone is fully developed, and the crack belt finally develops to the top of the model. In order to verify the accuracy of the numerical simulation, similar material simulation experiments were performed under the same scheme. The results are consistent with the numerical simulation conclusions, effectively verifying the accuracy of the numerical simulation. Finally, the extraction of porosity of the goaf was carried out based on numerical simulation, and the permeability zoning of the goaf was performed; the results show that the development of the water-conducting fracture zone has a significant influence on the permeability of the mining area, and the more fully developed the fissure is, the greater is its permeability. In this paper, the fissure development law in the goaf under different key stratums is explored by various research stratums, and the results show a good consistency, which provides a scientific basis for the prevention and control of disasters such as water inrush and coal and gas outburst in mines, and provides theoretical guidance for safe mining.


2021 ◽  
Vol 13 (24) ◽  
pp. 13775
Author(s):  
Xiuchang Shi ◽  
Jixing Zhang

In order to solve the issues of uncertain overburden failure height and water loss at the Daliuta coal mine, the collapse characteristics of overburden and the development height of water-conducting fractured zone were studied by using physical modeling, FLAC 3D numerical simulation, and field observation, which were used to verify each other. In order to quantitatively analyze the distribution characteristics of fracture rate of overlying rock mass in goaf, the overburden collapse image was binarized. The results showed that: (1) the failure characteristics of overburden in goaf obtained by the three research methods were roughly consistent, and the reliability of the results was high. The overburden failure height of No. 5−2 coal with large mining height was 137.32–153 m, which was 20.8–23.2 times the mining height. (2) The repeated mining of No. 5−2 coal intensified the further failure of the disturbed rock mass in the No. 2−2 coal goaf. (3) In the horizontal direction of the goaf, the fracture rate of rock mass was distributed in the shape of “saddle”. In the longitudinal direction of the goaf, the rock mass fracture rate decreased in a logarithmic function with the increase of the height from the mining coal seam. Overall, the conclusions are of engineering significance for accurately adopting water resources protection mining technology and reducing mine water inrush disasters.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Changde Yang ◽  
Ling Li ◽  
Ying Li ◽  
Yakuan Gao

Reinforcement with grout as an environmentally friendly technology has played a key role in underground coal mining. The risk of the water inrush into coal mines can all be reduced by grouting. A model that integrates a geographic information system (GIS), distribution of quantity of grouting injected, and water inflow correlation method is proposed here to evaluate the effects of grouted reinforcement in coal mining. The temporal and spatial characteristics of the volume of grout injected and water yield of aquifers are analyzed by using the GIS, and the rate of filling of cement slurry and its distribution characteristics are determined. The effects of grouting on the aquifers which has been carried out to reduce their permeability are determined by comparing the spatial temporal variations in the volume of the grout injected, water yield, and rate of filling of the cement slurry. The method was applied in a case study in a coalmine in Henan province, China, in which the risk of the water inrush from karst aquifers has been reduced by grouting. There are three limestone aquifers, namely, L8, L10, and L11 which underlie an exploitable coal seam. The result indicates that most of the cement slurry is consumed when the water yield is 20 to 30 m3/h; and that there are minimal changes of the electrical properties of the rock stratum under coal seam when the water yield of L11 is low within the range of 40 m. The resistivity of the aquifers before and after grouting and their spatial characteristics are tested by using the transient electromagnetic method (TEM), and this shows that there are no areas with low resistivity. The electrical properties of the strata at a depth that ranges from 40–80 m with transverse homogeneity show that Aquifers L10 and L11 have been transformed into aquicludes. The reinforcement effect of aquifers with grout is good.


ACS Omega ◽  
2021 ◽  
Author(s):  
Zaiyong Wang ◽  
Qi Zhang ◽  
Jianli Shao ◽  
Wenquan Zhang ◽  
Xintao Wu ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Juntao Chen ◽  
Yi Zhang ◽  
Kai Ma ◽  
Daozeng Tang ◽  
Hao Li ◽  
...  

To further explore the crack evolution of floor rock mass, the mechanism of fault activation, and water inrush, this paper analyzes the crack initiation and propagation mechanism of floor rock mass and obtains the initiation criteria of shear cracks, layered cracks, and vertical tension cracks. With the help of simulation software, the process of fault activation and crack evolution under different fault drop and dip angles was studied. The results show that the sequence of crack presented in the mining rock mass is vertical tension cracks, shear cracks, and layered cracks. The initiation and propagation of the shear cracks at the coal wall promote the fault activation, which tends to be easily caused at a specific inclination angle between 45° and 75°. The fault drop has no obvious impact on the evolution of floor rock cracks and will not induce fault activation. However, the increase of the drop will cause the roof to collapse, reducing the possibility of water inrush disaster. Research shows that measures such as adopting improved mining technology, reducing mining disturbance, increasing coal pillar size, and grouting before mining as reinforcement and artificial forced roof can effectively prevent water inrush disasters caused by deep mining due to fault activation.


Sign in / Sign up

Export Citation Format

Share Document