Secondary optimal energy growth and magnetic damping of turbulence in Hartmann channel flow

2016 ◽  
Vol 60 ◽  
pp. 209-218 ◽  
Author(s):  
Shuai Dong ◽  
Dmitry Krasnov ◽  
Thomas Boeck
Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 53
Author(s):  
Stefania Cherubini ◽  
Francesco Picella ◽  
Jean-Christophe Robinet

Variational optimization has been recently applied to nonlinear systems with many degrees of freedom such as shear flows undergoing transition to turbulence. This technique has unveiled powerful energy growth mechanisms able to produce typical coherent structures currently observed in transition and turbulence. However, it is still not clear the extent to which these nonlinear optimal energy growth mechanisms are robust with respect to external disturbances or wall imperfections. Within this framework, this work aims at investigating how nano-roughnesses such as those of superhydrophobic surfaces affect optimal energy growth mechanisms relying on nonlinearity. Nonlinear optimizations have been carried out in a channel flow with no-slip and slippery boundaries, mimicking the presence of superhydrophobic surfaces. For increasing slip length, the energy threshold for obtaining hairpin-like nonlinear optimal perturbations slightly rises, scaling approximately with Re−2.36 no matter the slip length. The corresponding energy gain increases with Re with a slope that reduces with the slip length, being almost halved for the largest slip and Reynolds number considered. This suggests a strong effect of boundary slip on the energy growth of these perturbations. While energy is considerably decreased, the shape of the optimal perturbation barely changes, indicating the robustness of optimal perturbations with respect to wall slip.


2010 ◽  
Vol 24 (13) ◽  
pp. 1449-1452
Author(s):  
ZHI-WEI GUO ◽  
DE-JUN SUN

The resonance phenomenon for nonmodal perturbation of Batchelor vortex is studied. For azimuthal wavenumber n = - 1, two resonant peaks appear and the left one is always dominant. For n = 1, the resonant character becomes very complicated. There is a resonant mode switch from right peak to left peak as swirl parameter q increases from 2 to infinity. The resonant wavenumber k is the largest when q approaches to infinity for n = - 1 while it is the smallest for n = 1. The maximum value of the optimal energy growth for n = 1 is at q approaches to infinity, whereas it decreases monotonically as q increases for n = - 1. The resonance for n = - 1 is the more important one.


2014 ◽  
Vol 760 ◽  
pp. 278-303 ◽  
Author(s):  
Akshat Agarwal ◽  
Luca Brandt ◽  
Tamer A. Zaki

AbstractThe evolution of an initially localized disturbance in polymeric channel flow is investigated, with the FENE-P model used to characterize the viscoelastic behaviour of the flow. In the linear growth regime, the flow response is stabilized by viscoelasticity, and the maximum attainable disturbance-energy amplification is reduced with increasing polymer concentration. The reduction in the energy growth rate is attributed to the polymer work, which plays a dual role. First, a spanwise polymer-work term develops, and is explained by the tilting action of the wall-normal vorticity on the mean streamwise conformation tensor. This resistive term weakens the spanwise velocity perturbation thus reducing the energy of the localized disturbance. The second action of the polymer is analogous, with a wall-normal polymer work term that weakens the vertical velocity perturbation. Its indirect effect on energy growth is substantial since it reduces the production of Reynolds shear stress and in turn of the streamwise velocity perturbation, or streaks. During the early stages of nonlinear growth, the dominant effect of the polymer is to suppress the large-scale streaky structures which are strongly amplified in Newtonian flows. As a result, the process of transition to turbulence is prolonged and, after transition, a drag-reduced turbulent state is attained.


Solar Physics ◽  
2017 ◽  
Vol 292 (10) ◽  
Author(s):  
David MacTaggart ◽  
Peter Stewart

2007 ◽  
Vol 19 (5) ◽  
pp. 058107 ◽  
Author(s):  
Carlo Cossu ◽  
Mattias Chevalier ◽  
Dan S. Henningson

2018 ◽  
Vol 50 (1) ◽  
pp. 011421
Author(s):  
Sharath Jose ◽  
Anubhab Roy ◽  
Rahul Bale ◽  
Krithika Iyer ◽  
Rama Govindarajan

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4127
Author(s):  
Yiyang Sun ◽  
Maziar S. Hemati

For channel flow at subcritical Reynolds numbers ( R e < 5772 ), a laminar-to-turbulent transition can emerge due to a large transient amplification in the kinetic energy of small perturbations, resulting in an increase in drag at the walls. The objectives of the present study are three-fold: (1) to study the nonlinear effects on transient energy growth, (2) to design a feedback control strategy to prevent this subcritical transition, and (3) to examine the control mechanisms that enable transition suppression. We investigate transient energy growth of linear optimal disturbance in plane Poiseuille flow at a subcritical Reynolds number of R e = 3000 using linear analysis and nonlinear simulation. Consistent with previous studies, we observe that the amplification of the given initial perturbation is reduced when the nonlinear effect is substantial, with larger perturbations being less amplified in general. Moreover, we design linear quadratic optimal controllers to delay transition via wall-normal blowing and suction actuation at the channel walls. We demonstrate that these feedback controllers are capable of reducing transient energy growth in the linear setting. The performance of the same controllers is evaluated for nonlinear flows where a laminar-to-turbulent transition emerges without control. Nonlinear simulations reveal that the controllers can reduce transient energy growth and suppress transition. Further, we identify and characterize the underlying physical mechanisms that enable feedback control to suppress and delay laminar-to-turbulent transition.


Sign in / Sign up

Export Citation Format

Share Document