scholarly journals Corneal epithelial proliferation and thickness in a mouse model of dry eye

2009 ◽  
Vol 89 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Claudia Fabiani ◽  
Stefano Barabino ◽  
Saadia Rashid ◽  
M. Reza Dana
2020 ◽  
Vol 36 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Xiaolan Chen ◽  
Sujin Lee ◽  
Tianyi Zhang ◽  
Tianying Duan ◽  
Neel D. Pasricha ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Xujiao Zhou ◽  
Yiqin Dai ◽  
Zimeng Zhai ◽  
Jiaxu Hong

Purpose: To explore whether 5-HT1A receptors are involved in the dry eye disease (DED) mouse model and reveal its underlying mechanism.Methods: A C57BL/6J mouse DED model was established via the administration of 0.2% benzalkonium chloride twice a day for 14 days. Corneal fluorescein sodium staining score and Schirmer I test were checked before, and on days 7, 14, and 21 after treatment. The experiment was randomly divided into control, DED, 5-HT1A receptor agonist with or without N-acetylcysteine (NAC) and 5-HT1A receptor antagonist with or without NAC groups. The mRNA expression of inflammatory cytokines was measured by reverse transcription-quantitative polymerase chain reaction. Cellular reactive oxygen species (ROS) were detected by 2', 7'-dichlorodihydrofluorescein diacetate assays. Western blot analysis was used to measure the expression levels of autophagic proteins microtubule-associated protein 1 light chain 3 (LC3B-I/II) and autophagy-related gene 5 (ATG5).Results: 5-HT1A receptor agonist (8-OH-DPAT) increased corneal fluorescein sodium staining spots and 5-HT1A receptor antagonist (WAY-100635) decreased them. Treatment with 8-OH-DPAT was associated with the gene expression of more inflammatory cytokines, such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 10 (CXCL10) compared with treatment with WAY-100635. An increased expression of LC3B-I/II and ATG5 was observed in corneal epithelial cells in the mouse model of DED. 8-OH-DPAT significantly enhanced the expression of LC3B-I/II and ATG5 by disrupting ROS levels. WAY-100635 alleviates autophagy by inhibiting ROS production.Conclusion: Excessive ROS release through 8-OH-DPAT induction can lead to impaired autophagy and increased inflammatory response in DED. WAY-100635 reduces corneal epithelial defects and inflammation in DED, as well as alleviates autophagy by inhibiting ROS production. The activation of the 5-HT1A receptor-ROS-autophagy axis is critically involved in DED development.


RSC Advances ◽  
2019 ◽  
Vol 9 (23) ◽  
pp. 12998-13006 ◽  
Author(s):  
Mincong Zhao ◽  
Li Liu ◽  
Yating Zheng ◽  
Guangrong Liu ◽  
Biao Che ◽  
...  

Dry eye disease (DED) is characterized by increased osmolality of tears due to a lack of production or increased evaporation of tears.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1801
Author(s):  
Yi-Zhou Chen ◽  
Zhi-Yu Chen ◽  
Yu-Jun Tang ◽  
Cheng-Han Tsai ◽  
Yu-Lun Chuang ◽  
...  

Dry eye syndrome (DES) is a common ophthalmological disease that decreases tear secretion and causes dryness, photophobia, pain, severe corneal rupture, and even blindness. Ocular and lacrimal gland inflammation is one of the pathological mechanisms underlying DES. Therefore, effective suppression of inflammation is a crucial strategy for the treatment of DES. Lutein, commonly found in healthy foods, has anti-inflammatory effects in corneal or retina-related cells and may be a potential therapy for DES. The addition of lutein to artificial tears (AT) as an eye-drop formulation for DES treatment in a mouse model was studied in the present work. Polyvinyl alcohol (PVA) was used as a thickener to increase the viscosity of eye drops to prolong drug retention on the ocular surface. A WST-8 assay in human corneal epithelial cells (HCE-2) showed that a concentration of <5 μM lutein (L5) and <1% PVA (P1) maintained the cell viability at 80%. A real-time PCR showed that the inflamed human corneal epithelial cells (HCECs) cocultured with L5P1 had downregulated expression of inflammatory genes such as IL-1β, IL-6, and TNF-α. In a benzalkonium chloride- (BAC) induced DES mouse model, AT/L5P1 could repair damaged corneas, elevate tear secretion, increase the number of goblet cells, and inhibit the production of inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in the cornea. In conclusion, we demonstrate that lutein/PVA as eye drops could prolong the drug ocular retention time and effectively to decrease inflammation in DES mice. Therefore, lutein, obtained from eye drops, has a potential therapeutic role for DES.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Lv ◽  
Chenchen Chu ◽  
Ke Liu ◽  
Yusha Ru ◽  
Yan Zhang ◽  
...  

AbstractAn important mechanism involved in dry eye (DE) is the association between tear hyperosmolarity and inflammation severity. Inflammation in DE might be mediated by the NLRP3 inflammasome, which activated by exposure to reactive oxygen species (ROS). A combination of carboxymethylcellulose (CMC) and α-melanocyte stimulating hormone (α-MSH) may influence DE through this mechanism, thus avoiding defects of signal drug. In this study, we assessed whether treatment comprising CMC combined with α-MSH could ameliorate ocular surface function; we found that it promoted tear secretion, reduced the density of fluorescein sodium staining, enhanced the number of conjunctival goblet cells, and reduced the number of corneal apoptotic cells. Investigation of the underlying mechanism suggested that the synergistic effect of combined treatment alleviated DE inflammation through reduction of ROS level and inhibition of the NLRP3 inflammasome in human corneal epithelial cells. These findings indicate that combined CMC + α-MSH treatment could ameliorate lesions and restore ocular surface function in patients with DE through reduction of ROS level and inhibition of NLRP3 signalling.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Shivapriya Shivakumar ◽  
Trailokyanath Panigrahi ◽  
Rohit Shetty ◽  
Murali Subramani ◽  
Arkasubhra Ghosh ◽  
...  

Dry eye disease (DED) is a multifactorial ocular surface disorder affecting millions of individuals worldwide. Inflammation has been associated with dry eye and anti-inflammatory drugs are now being targeted as the alternate therapeutic approach for dry eye condition. In this study, we have explored the anti-inflammatory and autophagy modulating effect of chloroquine (CQ) in human corneal epithelial and human corneal fibroblasts cells exposed to desiccation stress, (anin-vitromodel for DED). Gene and protein expression profiling of inflammatory and autophagy related molecular factors were analyzed in HCE-T and primary HCF cells exposed to desiccation stress with and without CQ treatment. HCE-T and HCF cells exposed to desiccation stress exhibited increased levels of activated p65, TNF-α, MCP-1, MMP-9, and IL-6. Further, treatment with CQ decreased the levels of active p65, TNF-α, MCP-1, and MMP-9 in cells underdesiccation stress. Increased levels of LC3B and LAMP1 markers in HCE-T cells exposed to desiccation stress suggest activation of autophagy and the addition of CQ did not alter these levels. Changes in the phosphorylation levels of MAPKinase and mTOR pathway proteins were found in HCE-T cells under desiccation stress with or without CQ treatment. Taken together, the data suggests that HCE-T cells under desiccation stress showed NFκB mediated inflammation, which was rescued through the anti-inflammatory effect of CQ without altering the autophagy flux. Therefore, CQ may be used as an alternate therapeutic management for dry eye condition.


Sign in / Sign up

Export Citation Format

Share Document