nod mouse
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 24)

H-INDEX

51
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Braxton L. Jamison ◽  
James E. DiLisio ◽  
K. Scott Beard ◽  
Tobias Neef ◽  
Brenda Bradley ◽  
...  

The induction of antigen (Ag)-specific tolerance and replacement of islet β-cells are major ongoing goals for the treatment of Type 1 Diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4<sup>+</sup> T cells in the non-obese diabetic (NOD) mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and to the expansion of Foxp3+ regulatory T cells specific for the same antigen. Notably, our results indicate that effector function of graft-infiltrating CD4<sup>+</sup> and CD8<sup>+</sup> T cells specific for other β-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with a hybrid insulin peptide can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


2022 ◽  
Author(s):  
Braxton L. Jamison ◽  
James E. DiLisio ◽  
K. Scott Beard ◽  
Tobias Neef ◽  
Brenda Bradley ◽  
...  

The induction of antigen (Ag)-specific tolerance and replacement of islet β-cells are major ongoing goals for the treatment of Type 1 Diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4<sup>+</sup> T cells in the non-obese diabetic (NOD) mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and to the expansion of Foxp3+ regulatory T cells specific for the same antigen. Notably, our results indicate that effector function of graft-infiltrating CD4<sup>+</sup> and CD8<sup>+</sup> T cells specific for other β-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with a hybrid insulin peptide can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


Diabetes ◽  
2022 ◽  
Author(s):  
Braxton L. Jamison ◽  
James E. DiLisio ◽  
K. Scott Beard ◽  
Tobias Neef ◽  
Brenda Bradley ◽  
...  

The induction of antigen (Ag)-specific tolerance and replacement of islet β-cells are major ongoing goals for the treatment of Type 1 Diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4+ T cells in the non-obese diabetic (NOD) mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and to the expansion of Foxp3+ regulatory T cells specific for the same antigen. Notably, our results indicate that effector function of graft-infiltrating CD4+ and CD8+ T cells specific for other β-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with a hybrid insulin peptide can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Michael J. V. White ◽  
Priscilla S. Briquez ◽  
David A. V. White ◽  
Jeffrey A. Hubbell

AbstractChronic non-healing wounds, frequently caused by diabetes, lead to lower quality of life, infection, and amputation. These wounds have limited treatment options. We have previously engineered growth factors to bind to exposed extracellular matrix (ECM) in the wound environment using the heparin-binding domain of placental growth factor-2 (PlGF-2123–144), which binds promiscuously to ECM proteins. Here, in the type 1 diabetic (T1D) NOD mouse model, engineered growth factors (eGFs) improved both re-epithelialization and granulation tissue formation. eGFs were even more potent in combination, and the “triple therapy” of vascular endothelial growth factor-A (VEGF-PlGF-2123–144), platelet-derived growth factor-BB (PDGF-BB-PlGF-2123–144), and heparin-binding epidermal growth factor (HB-EGF-PlGF-2123–144) both improved wound healing and remained at the site of administration for significantly longer than wild-type growth factors. In addition, we also found that changes in the cellular milieu of a wound, including changing amounts of M1 macrophages, M2 macrophages and effector T cells, are most predictive of wound-healing success in the NOD mouse model. These results suggest that the triple therapy of VEGF-PlGF-2123–144, PDGF-BB-PlGF-2123–144, and HB-EGF-PlGF-2123–144 may be an effective therapy for chronic non-healing wounds in that occur as a complication of diabetes.


2021 ◽  
Author(s):  
Shruti Singh Kakan ◽  
Maria C Edman ◽  
Alexander Yao ◽  
Curtis T Okamoto ◽  
Brooke E Hjelm ◽  
...  

Objective: The tear miRNAome of the male NOD mouse, a model of ocular symptoms of Sjögren′s syndrome (SS), was analyzed to identify possible tear biomarkers of the disease. Methods: Male NOD mice, aged 12-14 weeks, were used to identify tear miRNAs associated with development of autoimmune dacryoadenitis. Age-matched female NOD mice that do not develop the autoimmune dacryoadenitis characteristic of SS were used as negative controls while age- and sex-matched male BALB/c mice served as healthy controls. Total RNA was isolated from stimulated tears pooled from 5 mice per sample and tear miRNAs were sequenced and analyzed. Putative miRNA hits were validated using RT-qPCR in a separate mouse cohort, and the pathways influenced by the validated hits were identified using Ingenuity Pathway Analysis. Results: In comparison to tears from both healthy (male BALB/c) and negative control (female NOD) mice, initial analysis identified 7 upregulated and 7 downregulated miRNAs in male NOD mouse tears. Of these, 8 were subsequently validated by RT-qPCR in tears from additional mouse cohorts. miRNAs previously implicated in SS pathology included mmu-miR-146a/b-5p, which were significantly downregulated in the male NOD mouse tears, as well as mmu-miR-150-5p and mmu-miR-181a-5p, which were upregulated in the male NOD mouse tears. All other validated hits including the upregulated miR-181b-5p and mmu-miR-203-3p, as well as the downregulated mmu-miR-322-5p and mmu-miR-503-5p, represent novel putative indicators of autoimmune dacryoadenitis in SS. Conclusions: A panel of differentially expressed miRNAs were identified in tears of SS model male NOD mice, including some never previously linked to SS. These may have potential utility as diagnostic biomarkers for ocular symptoms of SS; evaluation of the pathways influenced by these dysregulated miRNAs may also provide further insights into SS pathogenesis.


2021 ◽  
Author(s):  
MICHAEL John Victor WHITE ◽  
Priscilla Briquez ◽  
David Andrew Victor White ◽  
Jeffrey Hubbell

Chronic non-healing wounds, frequently caused by diabetes, lead to lower quality of life, infection, and amputation. These wounds have limited treatment options. We have previously engineered growth factors to bind to exposed extracellular matrix (ECM) in the wound environment using the heparin-binding domain of placental growth factor-2 (PlGF-2123-144), which binds promiscuously to ECM proteins. Here, in the type 1 diabetic (T1D) NOD mouse model, engineered growth factors improved both re-epithelialization and granulation tissue formation. Engineered growth factors were even more potent in combination, and the *triple therapy* of vascular endothelial growth factor-A (VEGF-PlGF-2123-144), platelet-derived growth factor-BB (PDGF-BB-PlGF-2123-144), and heparin-binding epidermal-growth factor (EGF-PlGF-2123-144) both improved wound healing and remained at the site of administration for significantly longer than wild-type growth factors. In addition, we also found that changes in the cellular milieu of a wound, including changing amounts of M1 macrophages, M2 macrophages and effector T cells, are most predictive of wound healing success in the NOD mouse model. These results suggest that the triple therapy of VEGF-PlGF-2123-144, PDGF-BB-PlGF-2123-144, and EGF-PlGF-2123-144 may be an effective therapy for chronic non-healing wounds in that occur as a complication of diabetes.


2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


Diabetes ◽  
2021 ◽  
pp. db201072
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Diabetologia ◽  
2021 ◽  
Author(s):  
Éva Korpos ◽  
Nadir Kadri ◽  
Sophie Loismann ◽  
Clais R. Findeisen ◽  
Frank Arfuso ◽  
...  

Abstract Aims/hypothesis We and others previously reported the presence of tertiary lymphoid organs (TLOs) in the pancreas of NOD mice, where they play a role in the development of type 1 diabetes. Our aims here are to investigate whether TLOs are present in the pancreas of individuals with type 1 diabetes and to characterise their distinctive features, in comparison with TLOs present in NOD mouse pancreases, in order to interpret their functional significance. Methods Using immunofluorescence confocal microscopy, we examined the extracellular matrix (ECM) and cellular constituents of pancreatic TLOs from individuals with ongoing islet autoimmunity in three distinct clinical settings of type 1 diabetes: at risk of diabetes; at/after diagnosis; and in the transplanted pancreas with recurrent diabetes. Comparisons were made with TLOs from 14-week-old NOD mice, which contain islets exhibiting mild to heavy leucocyte infiltration. We determined the frequency of the TLOs in human type 1diabetes with insulitis and investigated the presence of TLOs in relation to age of onset, disease duration and disease severity. Results TLOs were identified in preclinical and clinical settings of human type 1 diabetes. The main characteristics of these TLOs, including the cellular and ECM composition of reticular fibres (RFs), the presence of high endothelial venules and immune cell subtypes detected, were similar to those observed for TLOs from NOD mouse pancreases. Among 21 donors with clinical type 1 diabetes who exhibited insulitis, 12 had TLOs and had developed disease at younger age compared with those lacking TLOs. Compartmentalised TLOs with distinct T cell and B cell zones were detected in donors with short disease duration. Overall, TLOs were mainly associated with insulin-containing islets and their frequency decreased with increasing severity of beta cell loss. Parallel studies in NOD mice further revealed some differences in so far as regulatory T cells were essentially absent from human pancreatic TLOs and CCL21 was not associated with RFs. Conclusions/interpretation We demonstrate a novel feature of pancreas pathology in type 1 diabetes. TLOs represent a potential site of autoreactive effector T cell generation in islet autoimmunity and our data from mouse and human tissues suggest that they disappear once the destructive process has run its course. Thus, TLOs may be important for type 1 diabetes progression. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document