Influence of air on heat transfer of a closed-loop spray cooling system

2020 ◽  
Vol 111 ◽  
pp. 109903 ◽  
Author(s):  
Pengfei Liu ◽  
Ranjith Kandasamy ◽  
Huicheng Feng ◽  
Teck Neng Wong ◽  
Kok Chuan Toh
2016 ◽  
Vol 29 (3) ◽  
pp. 630-638 ◽  
Author(s):  
Hongsheng Zhang ◽  
Yunze Li ◽  
Shengnan Wang ◽  
Yang Liu ◽  
Mingliang Zhong

Author(s):  
Azzam S. Salman ◽  
Jamil A. Khan

Experiments were conducted in a closed loop spray cooling system working with deionized water as a working fluid. This study was performed to investigate the effect of the spraying parameters, such as Sauter mean diameter (SMD), the droplet velocity, and the residual velocity on the spray cooling heat transfer in the non-boiling region. Thermal effects on plain and modified surfaces with circular grooves were examined under different operating conditions. The inlet pressure of the working fluid was varied from 78.6 kPa to 183.515kPa, and the inlet temperature was kept between 21–22 °C. The distance between the nozzle and the target surface 10 mm. The results showed that increasing the coolant inlet pressure increases the droplet velocity and the number of droplets produced while decreasing the droplet size. As a consequence of these changes, increasing inlet pressure improved the heat transfer characteristics of both surfaces.


2011 ◽  
Vol 23 (9) ◽  
pp. 2356-2360
Author(s):  
王照亮 Wang Zhaoliang ◽  
马永 Ma Yong ◽  
张伟 Zhang Wei ◽  
赵欣 Zhao Xin

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3963 ◽  
Author(s):  
Jia-Xin Li ◽  
Yun-Ze Li ◽  
Ben-Yuan Cai ◽  
En-Hui Li

This paper presents an air-oriented spray cooling system (SCS) integrated with a two-phase ejector for the thermal management system. Considering its aeronautical application, the spray nozzle in the SCS is an air-blast one. Heat transfer performance (HTP) of air-water spray cooling was studied experimentally on the basis of the ground-based test. Factors including pressure difference between water-inlet-pressure (WIP) and spray cavity one (PDWIC) and the spray volumetric flow rate (SVFR) were investigated and discussed. Under a constant operating condition, the cooling capacity can be promoted by the growth factors of the PDWIC and SVFR with the values from 51.90 kPa to 235.35 kPa and 3.91 L ⋅ h − 1 to 14.53 L ⋅ h − 1 , respectively. Under the same heating power, HTP is proportional to the two dimensionless parameters Reynolds number and Weber number due to the growth of droplet-impacting velocity and droplet size as the increasing of PDWIC or SVFR. Additionally, compared with the factor of the droplet size, the HTP is more sensitive to the variation in the droplet-impacting velocity. Based on the experimental data, an empirical experimental correlation for the prediction of the dimensionless parameter Nusselt number in the non-boiling region with the relative error of only ± 10 % was obtained based on the least square method.


2013 ◽  
Vol 46 ◽  
pp. 183-190 ◽  
Author(s):  
Eduardo Martínez-Galván ◽  
Raúl Antón ◽  
Juan Carlos Ramos ◽  
Rahmatollah Khodabandeh

2008 ◽  
Vol 130 (10) ◽  
Author(s):  
Ruey-Hung Chen ◽  
David S. Tan ◽  
Kuo-Chi Lin ◽  
Louis C. Chow ◽  
Alison R. Griffin ◽  
...  

Droplet and bubble dynamics and nucleate heat transfer in saturated FC-72 spray cooling were studied using a simulation model. The spray cooling system simulated consists of three droplet fluxes impinging on a smooth heater, where secondary nuclei outnumber the surface nuclei. Using the experimentally observed bubble growth rate on a smooth diamond heater, submodels were assumed based on physical reasoning for the number of secondary nuclei entrained by the impinging droplets, bubble puncturing by the impinging droplets, bubble merging, and the spatial distribution of secondary nuclei. The predicted nucleate heat transfer was in agreement with experimental findings. Dynamic aspects of the droplets and bubbles, which had been difficult to observe experimentally, and their ability in enhancing nucleate heat transfer were then discussed based on the results of the simulation. These aspects include bubble merging, bubble puncturing by impinging droplets, secondary nucleation, bubble size distribution, and bubble diameter at puncture. Simply increasing the number of secondary nuclei is not as effective in enhancing nucleate heat transfer as when it is also combined with increased bubble puncturing frequency by the impinging droplets. For heat transfer enhancement, it is desirable to have as many small bubbles and as high a bubble density as possible.


Sign in / Sign up

Export Citation Format

Share Document