scholarly journals A new extension theorem for linear codes

2004 ◽  
Vol 10 (4) ◽  
pp. 674-685 ◽  
Author(s):  
Tatsuya Maruta
2017 ◽  
Vol 16 (05) ◽  
pp. 1750098
Author(s):  
Serhii Dyshko

A complete extension theorem for linear codes over a module alphabet, equipped with the symmetrized weight composition, is proven. It is also shown that the extension property with respect to a general weight function does not hold for module alphabets, that have a noncyclic socle.


2006 ◽  
Vol 42 (4) ◽  
pp. 319-329 ◽  
Author(s):  
I. Landjev ◽  
A. Rousseva

2016 ◽  
Vol 15 (09) ◽  
pp. 1650162 ◽  
Author(s):  
Ali Assem

The extension problem for linear codes over modules with respect to Hamming weight was already settled in [J. A. Wood, Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc. 136 (2008) 699–706; Foundations of linear codes defined over finite modules: The extension theorem and MacWilliams identities, in Codes Over Rings, Series on Coding Theory and Cryptology, Vol. 6 (World Scientific, Singapore, 2009), pp. 124–190]. A similar problem arises naturally with respect to symmetrized weight compositions (SWC). In 2009, Wood proved that Frobenius bimodules have the extension property (EP) for SWC. More generally, in [N. ElGarem, N. Megahed and J. A. Wood, The extension theorem with respect to symmetrized weight compositions, in 4th Int. Castle Meeting on Coding Theory and Applications (2014)], it is shown that having a cyclic socle is sufficient for satisfying the property, while the necessity remained an open question. Here, landing in midway, a partial converse is proved. For a (not small) class of finite module alphabets, the cyclic socle is shown necessary to satisfy the EP. The idea is bridging to the case of Hamming weight through a new weight function. Note: All rings are finite with unity, and all modules are finite too. This may be re-emphasized in some statements. The convention for left homomorphisms is that inputs are to the left.


2011 ◽  
Vol 62 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Tatsuya Maruta ◽  
Yuri Yoshida

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Toshiharu Sawashima ◽  
Tatsuya Maruta

<p style='text-indent:20px;'>One of the fundamental problems in coding theory is to find <inline-formula><tex-math id="M3">\begin{document}$ n_q(k,d) $\end{document}</tex-math></inline-formula>, the minimum length <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula> for which a linear code of length <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula>, dimension <inline-formula><tex-math id="M6">\begin{document}$ k $\end{document}</tex-math></inline-formula>, and the minimum weight <inline-formula><tex-math id="M7">\begin{document}$ d $\end{document}</tex-math></inline-formula> over the field of order <inline-formula><tex-math id="M8">\begin{document}$ q $\end{document}</tex-math></inline-formula> exists. The problem of determining the values of <inline-formula><tex-math id="M9">\begin{document}$ n_q(k,d) $\end{document}</tex-math></inline-formula> is known as the optimal linear codes problem. Using the geometric methods through projective geometry and a new extension theorem given by Kanda (2020), we determine <inline-formula><tex-math id="M10">\begin{document}$ n_3(6,d) $\end{document}</tex-math></inline-formula> for some values of <inline-formula><tex-math id="M11">\begin{document}$ d $\end{document}</tex-math></inline-formula> by proving the nonexistence of linear codes with certain parameters.</p>


Sign in / Sign up

Export Citation Format

Share Document