Potential bioaccessibility of phenolic acids in whole wheat products during in vitro gastrointestinal digestion and probiotic fermentation

2021 ◽  
pp. 130135
Author(s):  
Wenfei Tian ◽  
Ruijia Hu ◽  
Gengjun Chen ◽  
Yiqin Zhang ◽  
Weiqun Wang ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1593
Author(s):  
Iván Gómez-López ◽  
Gloria Lobo-Rodrigo ◽  
María P. Portillo ◽  
M. Pilar Cano

The aim of the present study was the full characterization, quantification, and determination of the digestive stability and bioaccessibility of individual betalain and phenolic compounds of Opuntia stricta, var. Dillenii fresh fruits (peel, pulp, and whole fruit) and of the products of the industrialization to obtain jam (raw pressed juice (product used for jam formulation), by-product (bagasse), and frozen whole fruit (starting material for jam production)). Opuntia stricta var. Dillenii fruits and products profile showed 60 betalain and phenolic compounds that were identified and quantified by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF, being 25 phenolic acids (including isomers and derivatives), 12 flavonoids (including glycosides), 3 ellagic acids (including glycosides and derivative), and 20 betanins (including degradation compounds). In vitro gastrointestinal digestion was performed by INFOGEST® protocol. Fruit pulp showed the greater content of total betalains (444.77 mg/100 g f.w.), and jam only showed very low amounts of two betanin degradation compounds, Cyclo-dopa-5-O-β-glucoside (and its isomer) (0.63 mg/100 f.w.), and two Phyllocactin derivatives (1.04 mg/100 g f.w.). Meanwhile, fruit peel was the richer tissue in total phenolic acids (273.42 mg/100 g f.w.), mainly in piscidic acid content and total flavonoids (7.39 mg/100 g f.w.), isorhamnetin glucoxyl-rhamnosyl-pentoside (IG2) being the most abundant of these compounds. The stability of betalains and phenolic compounds during in vitro gastrointestinal digestion is reported in the present study. In Opuntia stricta var. Dillenii pulp (the edible fraction of the fresh fruit), the betanin bioaccessibility was only 22.9%, and the flavonoid bioaccessibility ranged from 53.7% to 30.6%, depending on the compound. In non-edible samples, such as peel sample (PE), the betanin bioaccessibility was 42.5% and the greater bioaccessibility in flavonoids was observed for quercetin glycoside (QG1) 53.7%, the fruit peel being the most interesting material to obtain antioxidant extracts, attending to its composition on antioxidant compounds and their bioaccessibilities.


LWT ◽  
2021 ◽  
pp. 112436
Author(s):  
Julianna Karla Santana Andrade ◽  
Romy Gleyse Chagas Barros ◽  
Nayjara Carvalho Gualberto ◽  
Christean Santos de Oliveira ◽  
Saravanan Shanmugam ◽  
...  

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 581-581
Author(s):  
Elisa Dufoo-Hurtado ◽  
Ivan Luzardo ◽  
Abraham Wall-Medrano ◽  
Guadalupe Loarca-Pina ◽  
Rocio Campos-Vega

Abstract Objectives This research aimed to evaluate the in vitro chronobiotic potential of Phyto-melatonin (PTM) during gastrointestinal digestion, its fermentative behavior (phenolic acids and other compounds), and potential production of chronobiotics (short-chain fatty acids or SCFAs production). Methods The chemical and nutraceutical composition of dry roasted and salted pistachios with seed coat (SC) (PN + SC) and without (PN) was evaluated. Both samples were digested under static in vitro simulated physiological conditions comprising oral, gastric, intestinal, and colonic stages. The PTM bioaccessibility during in vitro gastrointestinal digestion and colonic fermentation simulation was quantified. The identification and quantification of SCFAs and other colonic metabolites were conducted using SPME-GC-MS, followed by an untargeted metabolomic analysis. Results PN + SC had significantly (p < 0.05) lower lipids (−7.9) and protein (−1.1), but higher carbohydrate (+8.4) and total dietary fiber (+4.8) content (g/100g) than PN. PN + SC had highest content of total phenols (+42%), total flavonoids (+54%), and PMT (+21%) (p < 0.05) compared to PN. The bioaccessibility was low for both pistachio samples [Oral: 1.92 and 3.41%, PN + SC and PN; gastric: 0.83 and 1.63%; intestinal [60 min]: 1.79 and 2.55; colonic [6 h]: 0.32 and 0.36%). Chemo-informatics and an in silico analysis of PTM suggest that it was absorbed when chewed by the participants. The highest SCFAs were produced at 12 h during in vitro colonic fermentation for both pistachio samples, where PN + SC displayed the highest (p < 0.05) value (51 mmol/L), followed by PN (25.9 mmol/L). SCFAs, derived from bacterial fermentation of dietary fibers, can act as chronobiotics in peripheral clocks. The SCFAs molar ratio remained almost constant for both pistachio samples: butyric > propionic > acetic. Some metabolites with chronobiotic potential (e.g., indole, benzaldehyde, phenolic acids, and aliphatic/aromatic hydrocarbons) were detected, sample-dependent, through the untargeted metabolomics. Conclusions Pistachio's digestion increases the bioaccessibility of PTM and the biosynthesis of colonic metabolites (SCFAs, among others), all with chronobiotic potential to mitigate diseases linked to chronodisruption. Funding Sources The funding received by CONACyT/FOPES is appreciated.


2021 ◽  
Author(s):  
Wen Xia ◽  
Yanyun Lin ◽  
Ersheng Gong ◽  
Tong Li ◽  
Fengli Lian ◽  
...  

In general, pink bayberry cultivar, a vital source of polyphenols, showed strong antiproliferative activity after digestion at the end of the intestinal and colon steps, which can be considered as a dietary supplement.


2021 ◽  
pp. 130758
Author(s):  
Antía Lestido Cardama ◽  
Beatriz Millán Sánchez ◽  
Raquel Sendón ◽  
Ana Rodríguez Bernaldo de Quirós ◽  
Letricia Barbosa-Pereira

Sign in / Sign up

Export Citation Format

Share Document