Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model

2021 ◽  
pp. 110562
Author(s):  
Zhengqi Liu ◽  
Yujiao Zhang ◽  
Chunqing Ai ◽  
Chengrong Wen ◽  
Xiuping Dong ◽  
...  
LWT ◽  
2020 ◽  
pp. 110524
Author(s):  
Yuzhu Zhu ◽  
Jia-Min Zhou ◽  
Wei Liu ◽  
Xionge Pi ◽  
Qingqing Zhou ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1925 ◽  
Author(s):  
Tsitko ◽  
Wiik-Miettinen ◽  
Mattila ◽  
Rosa-Sibakov ◽  
Maukonen ◽  
...  

The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.


2022 ◽  
Author(s):  
Lisard Iglesias-Carres ◽  
Emily Krueger ◽  
Jacob Herring ◽  
Jeffery Tessem ◽  
Andrew Neilson

Trimethylamine N-oxide (TMAO) is a pro-atherosclerotic product of dietary choline metabolism generated by a microbiome-host axis. The first step in this pathway is enzymatic metabolism of choline to trimethylamine (TMA) by the gut microbiota. This reaction could be targeted to reduce atherosclerosis risk. We aimed to evaluate potential inhibitory effects of select dietary phenolics and their relevant gut microbial metabolites on TMA production via a human ex vivo-in vitro fermentation model. Various phenolics inhibited choline use and TMA production. The most bioactive compounds tested (caffeic acid, catechin and epicatechin) reduced TMA-d9 formation (compared to control) by 57.5 ± 1.3% to 72.5 ± 0.4% at 8 h and preserved remaining choline-d9 concentrations by 194.1 ± 6.4% to 256.1 ± 6.3% compared to control conditions at 8 h. These inhibitory effects were achieved without altering cell respiration or cell growth. However, inhibitory effects decreased at late fermentation times, which suggest that these compounds delay choline metabolism rather than completely inhibiting TMA formation. Overall, caffeic acid, catechin and epicatechin were the most effective non-cytotoxic inhibitors of choline use and TMA production. Thus, these compounds are proposed as lead bioactives to test in vivo.


2021 ◽  
Author(s):  
Lisard Iglesias-Carres ◽  
Emily Krueger ◽  
Jacob Herring ◽  
Jeffery Tessem ◽  
Andrew Neilson

Trimethylamine N-oxide (TMAO) is a pro-atherosclerotic product of dietary choline metabolism generated by a microbiome-host axis. The first step in this pathway is enzymatic metabolism of choline to trimethylamine (TMA) by the gut microbiota. This reaction could be targeted to reduce atherosclerosis risk. We aimed to evaluate potential inhibitory effects of select dietary phenolics and their relevant gut microbial metabolites on TMA production via a human ex vivo-in vitro fermentation model. Various phenolics inhibited choline use and TMA production, especially larger compounds or their larger metabolites, without altering cell respiration or cell growth. However, inhibitory effects decreased at late fermentation times, which suggest that these compounds delay choline metabolism rather than completely inhibiting TMA formation. Overall, caffeic acid, catechin and epicatechin were the most effective non-cytotoxic inhibitors of choline use and TMA production. Thus, these compounds are proposed as lead bioactives to test in vivo.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Nelson Mota de Carvalho ◽  
Diana Luazi Oliveira ◽  
Mayra Anton Dib Saleh ◽  
Manuela Pintado ◽  
Ana Raquel Madureira

The use of fecal inoculums for in vitro fermentation models requires a viable gut microbiota, capable of fermenting the unabsorbed nutrients. Fresh samples from human donors are used; however, the availability of fresh fecal inoculum and its inherent variability is often a problem. This study aimed to optimize a method of preserving pooled human fecal samples for in vitro fermentation studies. Different conditions and times of storage at −20 °C were tested. In vitro fermentation experiments were carried out for both fresh and frozen inoculums, and the metabolic profile compared. In comparison with the fresh, the inoculum frozen in a PBS and 30% glycerol solution, had a significantly lower (p < 0.05) bacterial count (<1 log CFU/mL). However, no significant differences (p < 0.05) were found between the metabolic profiles after 48 h. Hence, a PBS and 30% glycerol solution can be used to maintain the gut microbiota viability during storage at −20 °C for at least 3 months, without interfering with the normal course of colonic fermentation.


2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


Sign in / Sign up

Export Citation Format

Share Document