Nanofuels: Combustion, engine performance and emissions

Fuel ◽  
2014 ◽  
Vol 120 ◽  
pp. 91-97 ◽  
Author(s):  
Rakhi N. Mehta ◽  
Mousumi Chakraborty ◽  
Parimal A. Parikh
Author(s):  
S. Bari ◽  
Idris Saad

This research investigated the effect of guide vanes into the intake runner of a diesel engine run with higher viscous biodiesel to enhance the in-cylinder intake airflow characteristics. First, simulation of an internal combustion engine base model was done. Guide vanes of various lengths were developed and imposed into the intake runner to investigate the airflow characteristics. Based on the simulation results, five guide vanes models of 8, 10, 12, 14, and 16 mm length were constructed and tested on a compression ignition (CI) engine run with biodiesel. According to the experimental results of engine performance and emissions, it was found that guide vanes of 12 mm length showed the highest number of improvements with 14 mm and 10 mm length showed the second and third highest number of improvements, respectively. Therefore, this research concluded that guide vanes successfully improved the in-cylinder air flow characteristics to improve the mixing of higher viscous biodiesel with air resulting in better performances of the engines than without vanes.


AIMS Energy ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 1-22
Author(s):  
Sarbani Daud ◽  
◽  
Mohd Adnin Hamidi ◽  
Rizalman Mamat ◽  
◽  
...  

<abstract> <p>In recent years, there has been an increasing interest in additives for fuel research in the field of internal-combustion engine. Many studies have been conducted to improve the performance and emissions of the engine. Many kinds of additives in the form of solid, liquid, and gas have been used. The objective of this review is to examine the effects of having additives on the performance and emission of internal combustion engine. Additives such as alcohol, hydrogen, and metal oxides are proven to be successful to improve performance or reduce emission. Results from selected papers are discussed and summarised in a table. With the new development in nanotechnology, many researchers have shown an increased interest in carbon-based. In recent years, there has been an increasing interest in additives for fuel research in the field of internal-combustion engines. Many studies have been conducted to improve the performance and emissions of the engine. Many kinds of additives in the form of solids, liquids, and gases have been used. The objective of this review is to examine the effects of having additives on the performance and emissions of an internal combustion engine. Additives such as alcohol, hydrogen, and metal oxides are proven to be successful in improving performance or reducing emissions. Results from selected papers are discussed and summarised in a table. With the new developments in nanotechnology, many researchers have shown an increased interest in carbon-based nanoparticles such as multi-walled carbon nanotubes (MWCNT) and single-walled carbon nanotubes (SWCNT). Lately, with the discovery of graphene production techniques, graphene nanoplatelets (GNP) have also been applied as fuel additives. In addition to understanding the effects of the additives on the engine performance and emissions, researchers extended the research to predict the outcome of the performance and emissions. nanoparticles such as multi-walled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT). Lately, with the discovery of graphene production techniques, graphene nanoplatelets (GNP) also has also been applied as fuel additives. In addition to the understanding the effects of the additives to the engine performance and emissions, researchers extended the research to predict the outcome of the performance and emissions. The experiments involving the predictions efforts are summarised in a table. From the summary, it is found that the prediction of the GNP as fuel additive effects to the performance and emissions has not yet been explored. This gap is an opportunity for researchers to explore further.</p> </abstract>


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121097
Author(s):  
M. Mourad ◽  
Khaled R.M. Mahmoud ◽  
El-Sadek H. NourEldeen

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ali Hasan ◽  
Oskar J. Haidn

AbstractThe Paris Agreement has highlighted the need in reducing carbon emissions. Attempts in using lower carbon fuels such as Propane gas have seen limited success, mainly due to liquid petroleum gas tanks structural/size limitations. A compromised solution is presented, by combusting Jet A fuel with a small fraction of Propane gas. Propane gas with its relatively faster overall igniting time, expedites the combustion process. Computational fluid dynamics software was used to demonstrate this solution, with results validated against physical engine data. Jet A fuel was combusted with different Propane gas dosing fractions. Results demonstrated that depending on specific propane gas dosing fractions emission reductions in ppm are; NOx from 84 to 41, CO2 from less than 18,372 to less than 15,865, escaping unburned fuels dropped from 11.4 (just Jet A) to 6.26e-2 (with a 0.2 fraction of Propane gas). Soot and CO increased, this is due to current combustion chamber air mixing design.


Sign in / Sign up

Export Citation Format

Share Document