Inhibition discrimination of different chloride salts on coal functional groups

Fuel ◽  
2021 ◽  
pp. 122776
Author(s):  
Chunhua Zhang ◽  
Jiahui Shen ◽  
Ji Li ◽  
Mei Wan
1971 ◽  
Author(s):  
Warren G. Bennis ◽  
Michael Beer ◽  
Gerald R. Pieters ◽  
Alan T. Hundert ◽  
Samuel H. Marcus ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


1996 ◽  
Vol 451 ◽  
Author(s):  
T. Shimizu ◽  
M. Murahara

ABSTRACTA Fluorocarbon resin surface was selectively modified by irradiation with a ArF laser beam through a thin layer of NaAlO2, B(OH)3, or H2O solution to give a hydrophilic property. As a result, with low fluence, the surface was most effectively modified with the NaAlO2 solution among the three solutions. However, the contact angle in this case changed by 10 degrees as the fluence changed only 1mJ/cm2. When modifying a large area of the surface, high resolution displacement could not be achieved because the laser beam was not uniform in displacing functional groups. Thus, the laser fluence was successfully made uniform by homogenizing the laser beam; the functional groups were replaced on the fluorocarbon resin surface with high resolution, which was successfully modified to be hydrophilic by distributing the laser fluence uniformly.


2019 ◽  
Author(s):  
Marharyta V. Laktsevich-Iskryk ◽  
Nastassia A. Varabyeva ◽  
Volha V. Kazlova ◽  
Vladimir N. Zhabinskii ◽  
Vladimir A. Khripach ◽  
...  

In this article, we report a photocatalytic protocol for the isomerization of 1,2-disubstituted cyclopropanols to linear ketones. The reaction proceeds <i>via</i> radical intermediates and tolerates various functional groups.


2019 ◽  
Author(s):  
Marharyta V. Laktsevich-Iskryk ◽  
Nastassia A. Varabyeva ◽  
Volha V. Kazlova ◽  
Vladimir N. Zhabinskii ◽  
Vladimir A. Khripach ◽  
...  

In this article, we report a photocatalytic protocol for the isomerization of 1,2-disubstituted cyclopropanols to linear ketones. The reaction proceeds <i>via</i> radical intermediates and tolerates various functional groups.


2020 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Cassandra R. Youshaw ◽  
Mingbin Yuan ◽  
Michael B. Geherty ◽  
...  

The first iron-catalyzed three-component cross-coupling of unactivated olefins with alkyl halides and Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles, alkyl halides, and unactivated olefins bearing diverse functional groups to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.


2020 ◽  
Author(s):  
Zarko Boskovic ◽  
Manvendra Singh ◽  
Zachary Pearson ◽  
Nathan Garza

A collection of small molecules has been synthesized by composing photo-cycloaddition, C-H functionalization, and N-capping strategies. Multidimensional biological fingerprints of molecules comprising this collection have been recorded as changes in cell and organelle morphology. This untargeted, phenotypic approach allowed for a broad assessment of biological activity to be determined. Reproducibility and the magnitude of measured fingerprints revealed activity of several treatments. Reactive functional groups, such as imines, dominated the observed activity. Two non-reactive candidate compounds with distinct bioactivity fingerprints were identified, as well.


2020 ◽  
Author(s):  
Alexis Wolfel ◽  
Cecilia Inés Alvarez Igarzabal ◽  
Marcelo Ricardo Romero

<p>Design of materials with novel sensitivities and smart behaviour is important for the development of smart systems with automated responsiveness. We have recently reported the synthesis of hydrogels, cross-linked by <i>N,N'</i>-diallyltartardiamide (DAT). The covalent DAT-crosslinking points have vicinal diols which can be easily cleaved with periodate, generating valuable a-oxo-aldehyde functional groups, useful for further chemical modification. Based on those findings, we envisioned that a self-healable hydrogel could be obtained by incorporation of primary amino functional groups, from <a>2-aminoethyl methacrylate </a>hydrochloride (AEMA), coexisting with DAT into the same network. The a-oxo-aldehyde groups generated after the reaction with periodate would arise in the immediate environment of amine groups to form imine cross-links. For this purpose, DAT-crosslinked hydrogels were synthesized and carefully characterized. The cleavage of DAT-crosslinks with periodate promoted changes in the mechanical and swelling properties of the materials. As expected, a self-healing behavior was observed, based on the spontaneous formation of imine covalent bonds. In addition, we surprisingly found a combination of fast vicinal diols cleavage and a low speed self-crosslinking reaction by imine formation. Consequently, it was found a time-window in which a periodate-treated polymer was obtained in a transient liquid state, which can be exploited to choose the final shape of the material, before automated gelling. The singular properties attained on these hydrogels could be useful for developing sensors, actuators, among other smart systems.</p>


2020 ◽  
Author(s):  
Cristian Cavedon ◽  
Eric T. Sletten ◽  
Amiera Madani ◽  
Olaf Niemeyer ◽  
Peter H. Seeberger ◽  
...  

Protecting groups are key in the synthesis of complex molecules such as carbohydrates to distinguish functional groups of similar reactivity. The harsh conditions required to cleave stable benzyl ether protective groups are not compatible with many other protective and functional groups. The mild, visible light-mediated debenzylation disclosed here renders benzyl ethers orthogonal protective groups. Key to success is the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as stoichiometric or catalytic photooxidant such that benzyl ethers can be cleaved in the presence of azides, alkenes, and alkynes. The reaction time for this transformation can be reduced from hours to minutes in continuous flow. <br>


Sign in / Sign up

Export Citation Format

Share Document