Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations

2014 ◽  
Vol 131 ◽  
pp. 368-392 ◽  
Author(s):  
Corentin Le Guillou ◽  
Sylvain Bernard ◽  
Adrian J. Brearley ◽  
Laurent Remusat
Life ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 44
Author(s):  
Manale Noun ◽  
Donia Baklouti ◽  
Rosario Brunetto ◽  
Ferenc Borondics ◽  
Thomas Calligaro ◽  
...  

This study is a multi-technique investigation of the Paris carbonaceous chondrite directly applied on two selected 500 × 500 µm² areas of a millimetric fragment, without any chemical extraction. By mapping the partial hydration of the amorphous silicate phase dominating the meteorite sample matrix, infrared spectroscopy gave an interesting glimpse into the way the fluid may have circulated into the sample and partially altered it. The TOF-SIMS in-situ analysis allowed the studying and mapping of the wide diversity of chemical moieties composing the meteorite organic content. The results of the combined techniques show that at the micron scale, the organic matter was always spatially associated with the fine-grained and partially-hydrated amorphous silicates and to the presence of iron in different chemical states. These systematic associations, illustrated in previous studies of other carbonaceous chondrites, were further supported by the identification by TOF-SIMS of cyanide and/or cyanate salts that could be direct remnants of precursor ices that accreted with dust during the parent body formation, and by the detection of different metal-containing large organic ions. Finally, the results obtained emphasized the importance of studying the specific interactions taking place between organic and mineral phases in the chondrite matrix, in order to investigate their role in the evolution story of primitive organic matter in meteorite parent bodies.


2020 ◽  
Author(s):  
Naoki Hirakawa ◽  
Yoko Kebukawa ◽  
Yoshihiro Furukawa ◽  
Masashi Kondo ◽  
Kensei Kobayashi

Abstract Early evolution of Solar System small bodies proceeded through interactions of mineral and water. Melting of water ice accreted with mineral particles to the parent body results in the formation of secondary minerals, the so-called aqueous alteration. Formation of phyllosilicates from anhydrous silicates is a typical alteration effect recorded in primitive meteorites. In addition to mineral and water, organic matter could have been also a significant component in meteorite parent bodies. However, the role of organic matter in the alteration of silicates is not well understood. Here we show the in-situ formation of hydrated silicates through a mineral–organic interaction without the initial presence of water. Proto-phyllosilicates were experimentally confirmed on the anhydrous mineral (olivine) surface after being heated with molecular cloud organic matter analog at 300 °C for 10 days in this study. It could be due to H 2 O generated through pyrolysis of the organic compounds with hydroxy groups. Our results indicated that formation of phyllosilicates on the olivine surface in contact with organic matter can occur in meteorite parent bodies which formed inside the H 2 O snow line but accreted with organic matter, initially without water. Water formed through decomposition of organic matter could be one candidate for hydrous silicate formation in ordinary chondrites from S-type asteroids inside the H 2 O snow line. Although the origin of water in ordinary chondrites is under debate, water generation from organic matter may also explain the D-rich water in ordinary chondrites because primordial organic matter is known to be D-rich.


2021 ◽  
Author(s):  
Naoki Hirakawa ◽  
Yoko Kebukawa ◽  
Yoshihiro Furukawa ◽  
Masashi Kondo ◽  
Hideyuki Nakano ◽  
...  

Abstract Early evolution of Solar System small bodies proceeded through interactions of mineral and water. Melting of water ice accreted with mineral particles to the parent body results in the formation of secondary minerals, the so-called aqueous alteration. Formation of phyllosilicates from anhydrous silicates is a typical alteration effect recorded in primitive meteorites. In addition to mineral and water, organic matter could have been also a significant component in meteorite parent bodies. However, the role of organic matter in the alteration of silicates is not well understood. We conducted a heating experiment of anhydrous silicate (olivine) with a mixture of organic compounds which simulated primordial organic matter in the Solar System. Dissolution and precipitation features were confirmed on the olivine surface after heating at 300 °C for 10 days, and proto-phyllosilicates were formed in the precipitation area. Magnesite was also detected as concomitant mineral phase. These minerals could be the evidence of aqueous alteration and carbonation of olivine induced by water generated through decomposition of the organic compounds with hydroxy groups. Our result showed that the in-situ formation of hydrated silicates through a mineral-organic interaction without the initial presence of water. It further implies that formation of phyllosilicates on the olivine surface in contact with organic matter can occur in meteorite parent bodies which formed inside the H2O snow line but accreted with organic matter, initially without water. Water formed through decomposition of organic matter could be one candidate for hydrous silicate formation, for example in ordinary chondrites from S-type asteroids inside the H2O snow line. Although the origin of water in ordinary chondrites is under debate, water generation from organic matter may also explain the D-rich water in ordinary chondrites because primordial organic matter is known to be D-rich.


2019 ◽  
Vol 28 (1) ◽  
pp. 40-60
Author(s):  
Márta Polgári ◽  
Ildikó Gyollai ◽  
Szaniszló Bérczi ◽  
Miklós Veres ◽  
Arnold Gucsik ◽  
...  

Abstract Evolution of chondritic parent body is influenced by thermal, impact metamorphism and aqueous alteration, studied in Mező-Madaras, Knyahinya, Mócs and Nyírábrány in aspect of high resolution in situ textural, mineralogical and organic geochemical characteristics, using optical microscopy, FTIR-ATR and Raman spectroscopy. Our observations focused on Fe-containing opaque grains, glass, olivines and pyroxenes, which were well populated by micrometer-sized microbial filamentous elements in their boundary region within matrix and inside the minerals resembling mineralized microbially produced textures (MMPT), affecting 70-80 vol% of samples. In MMPT iron oxides (ferrihydrite, goethite), olivine, montmorillonite, kandite minerals and various hydrocarbon compounds were identified. (1) Data confirmed dense and invasive terrestrial microbially mediated contamination in the chondrites, supported by microtexture, micromineralogy and embedded organic compounds. As the classical transformation processes are supposed nowadays to have been happened on the parent bodies, a contradiction arose: how could it be that these classical products are manifested in microbially mediated texture? (2) Based on terrestrial analogies, microbial mediation is a sudden process comparing to geological times, very ancient, widespread and occur in various environments under determined conditions. It can consume previous and also produce new minerals. After formation, MMPT can survive billions of years proposing occurrence on parent bodies.


2018 ◽  
Vol 222 ◽  
pp. 230-252 ◽  
Author(s):  
Christine E. Jilly-Rehak ◽  
Gary R. Huss ◽  
Kazu Nagashima ◽  
Devin L. Schrader

2020 ◽  
Author(s):  
Naoki Hirakawa ◽  
Yoko Kebukawa ◽  
Yoshihiro Furukawa ◽  
Masashi Kondo ◽  
Hideyuki Nakano ◽  
...  

Abstract Early evolution of Solar System small bodies proceeded through interactions of mineral and water. Melting of water ice accreted with mineral particles to the parent body results in the formation of secondary minerals, the so-called aqueous alteration. Formation of phyllosilicates from anhydrous silicates is a typical alteration effect recorded in primitive meteorites. In addition to mineral and water, organic matter could have been also a significant component in meteorite parent bodies. However, the role of organic matter in the alteration of silicates is not well understood. We conducted a heating experiment of anhydrous silicate (olivine) with a mixture of organic compounds which simulated primordial organic matter in the Solar System. Dissolution and precipitation features were confirmed on the olivine surface after heating at 300 °C for 10 days, and proto-phyllosilicates were formed in the precipitation area. Magnesite was also detected as concomitant mineral phase. These minerals could be the evidence of aqueous alteration and carbonation of olivine induced by water generated through decomposition of the organic compounds with hydroxy groups. Our result showed that the in-situ formation of hydrated silicates through a mineral-organic interaction without the initial presence of water. It further implies that formation of phyllosilicates on the olivine surface in contact with organic matter can occur in meteorite parent bodies which formed inside the H2O snow line but accreted with organic matter, initially without water. Water formed through decomposition of organic matter could be one candidate for hydrous silicate formation, for example in ordinary chondrites from S-type asteroids inside the H2O snow line. Although the origin of water in ordinary chondrites is under debate, water generation from organic matter may also explain the D-rich water in ordinary chondrites because primordial organic matter is known to be D-rich.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


2010 ◽  
Vol 7 (11) ◽  
pp. 3473-3489 ◽  
Author(s):  
J. Holtvoeth ◽  
H. Vogel ◽  
B. Wagner ◽  
G. A. Wolff

Abstract. Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.


Sign in / Sign up

Export Citation Format

Share Document