scholarly journals Genetic identification of marine eels through DNA barcoding from Parangipettai coastal waters

Genomics Data ◽  
2017 ◽  
Vol 11 ◽  
pp. 81-84 ◽  
Author(s):  
Samuel Peninal ◽  
Janakiraman Subramanian ◽  
Alaganatham Elavarasi ◽  
Murugaiyan Kalaiselvam
Author(s):  
Alexandr Anatoljevich Volkov ◽  
Larisa Anatoljevna Kovaljova ◽  
Tatjana Timofeevna Troshina ◽  
Zhanara Omirbekovna Mazhibaeva ◽  
Dmitrij Valerjevich Pilin ◽  
...  

The article deals with carrying out DNA barcoding of aquatic invertebrates of Kazakhstan to identify their taxonomic status as organic pollution indicators. 33 species of the Balkhash-Alakol basin and the Zhayik river were analyzed. 21 species correlate (95-100%) with previously published sequences of invertebrates with well-known classifications in the GenBank and BOLD databases. The taxonomic discrepancy in morphometric and genetic parameters in certain species has been revealed. The discrepancy may be caused by the morphological identity in chironomids at a larval stage. The phylogenetic trees of the investigated species within the families Chironomidae and Moinidae have been indicated. Chironomids are represented by ten clades of different types of genetic polymorphism of DNA gene. Genetic links of Moinidae are detected in four groups including a cryptic species from Lake Alakol. It has been stated that in distribution of cryptic taxons in Moina family factors of salinity and depth of the lake are important, as well as differences in depth. Molecular DNA-barcoding of invertebrates of Kazakhstan should be continued with covering a greater number of species and several replications, with qualified primary fixation of subjects of research and a sufficient number of samples. Authenticity of composition defining, species abundance, species characteristics of aquatic invertebrates from the water bodies of poorly explored arid regions is necessary for using them as indicators of the ecological status of water bodies.


2020 ◽  
Vol 52 (1) ◽  
pp. 71-75
Author(s):  
Maurizio Cornalba ◽  
Paolo Biella ◽  
Andrea Galimberti

DNA barcoding is well-known to support morphological species identification and it can be helpful for unveiling unexpected populations divergence patterns, especially in the context of the impacts on species posed by global change. In this note, we provided the first Italian record of the alpine mining bee Andrena allosa Warncke, 1975, confirmed with DNA barcoding. In addition, genetic identification of a specimen of Andrena praecox (Scopoli 1753) from western Italy pointed to an unexpected intraspecific genetic structuring at COI DNA barcoding region, with sequences from the Italian and the western sector of its global distribution differing 2.22% (p-dist) from populations of the eastern sector. Given the relevance of these records and of the genetic identity of bee populations from Italy, we argue that implementing molecular surveys in bee monitoring would surely contribute to the conservation of these important pollinators.


2020 ◽  
Vol 5 (2) ◽  
pp. 1970-1974
Author(s):  
Bingpeng Xing ◽  
Xiaoyin Chen ◽  
Zhilan Zhang ◽  
Rouxin Sun ◽  
Peng Xiang ◽  
...  

2013 ◽  
Vol 93 (8) ◽  
pp. 2075-2088 ◽  
Author(s):  
Konglin Zhou ◽  
Lianming Zheng ◽  
Jinru He ◽  
Yuanshao Lin ◽  
Wenqing Cao ◽  
...  

The genus Clytia is distributed worldwide, but most accepted species in this genus have been examined either only at the hydroid or medusa stage. The challenge in identifying Clytia species reflects their complex life cycles and phenotypic plasticity. In this study, molecular and morphological investigations of Clytia specimens from the coastal waters of China revealed an as yet unreported species, designated C. xiamenensis sp. nov., that was considered as conspecific to two nearly cosmopolitan species, C. hemisphaerica and C. gracilis. DNA barcoding based on partial mitochondrial cytochrome c oxidase subunit I (COI) and large subunit ribosomal RNA gene (16S) confirmed the highly distinct lineage of C. xiamenensis sp. nov. These results were corroborated by the detailed observations of its mature medusae and its colonies, which showed that C. xiamenensis sp. nov. was morphologically distinct from other species of Clytia. Thus, based on our findings, the nearly cosmopolitan distribution attributed to some species of Clytia might rather be due to the misidentification, and it is necessary to elucidate their whole life cycle in order to establish the systematic validity of all species within the genus Clytia.


2017 ◽  
Vol 3 (1) ◽  
pp. 13-19
Author(s):  
Perkasa Arian ◽  
I Made Artika ◽  
Syamsul Falah

DNA barcoding has become a useful tool for identifying and confirming of species within a known taxonomic framework. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I (COI). This study was aimed to use DNA barcoding technique to identify and confirm species of Polypedates leucomystax and to analyze their phylogenetic relationship. Samples of Polypedates leucomystax were collected from Campus Area of Bogor Agricultural University. The cytochrome oxidase I gene of 600-700 nucleotides were amplified and observed in agarose gel electrophoresis. Forward sequence (604 base pairs) of COI gene was used for phylogenetic analyses. BLAST analysis against BOLD System database showed 95.75% identity with sequences of Polypedates leucomystax. The pairwise genetic distances of Polypedates leucomystax with Rhacophorus schlegelii, Limnonectes fujianensis, Fejervarya cancrivora, and Bufo melanostictus were 0.274, 0.352, 0.339, 0.339, 0.393, respectively. These results illustrated that the genetic identification is congruence with the morphological identification. Phylogenetic tree analysis showed that the samples were in one clade with other tree frogs. The DNA barcoding technique based on the sequence of COI gene can therefore be used to identify and confirm species of Polypedates leucomystax.


Author(s):  
S. V. Panteleev ◽  
O. Yu. Baranov ◽  
L. A. Golovchenko ◽  
A. V. Konstantinov ◽  
L. V. Mozharovskaya ◽  
...  

Based on the DNA-barcoding data, a molecular-genetic identification of the dominant microbiome species composition of the perennial floral plants phytophages was carried out. Various variants of species combinations in the microbiota–phytophagous system, as well as the ways of phytophagous transmission of pathogenic microflora have been identified.


2020 ◽  
Vol 24 (3) ◽  
pp. 333-349
Author(s):  
Nermin Ibrahim ◽  
Eman M. Abbas ◽  
Ayman El-Seedy ◽  
Taha Soliman ◽  
Fawzia S. Ali
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document