Experimental investigation of the effects of adhesive thickness on the fracture behavior of structural acrylic adhesive joints under various loading rates

2021 ◽  
Vol 105 ◽  
pp. 102782
Author(s):  
Yu Sekiguchi ◽  
Chiaki Sato
Author(s):  
Toshiyuki Sawa ◽  
Yuya Hirayama ◽  
He Dan

The stress wave propagation and stress distribution in scarf adhesive joints have been analyzed using three-dimensional finite element method (FEM). The FEM code employed was LS-DYNA. An impact tensile loading was applied to the joint by dropping a weight. The effect of the scarf angle, Young’s modulus of the adhesive and adhesive thickness on the stress wave propagations and stress distributions at the interfaces have been examined. As the results, it was found that the point where the maximum principal stress becomes maximum changes between 52 degree and 60 degree under impact tensile loadings. The maximum value of the maximum principal stress increases as scarf angle decreases, Young’s modulus of the adhesive increases and adhesive thickness increases. In addition, Experiments to measure the strains and joint strengths were compared with the calculated results. The calculated results were in fairly good agreements with the experimental results.


2010 ◽  
Vol 3 (1) ◽  
pp. 622-627 ◽  
Author(s):  
Mojtaba Eskandarian ◽  
Robert Jennings ◽  
Maxime Cote ◽  
Bernard Arsenault

2005 ◽  
Vol 881 ◽  
Author(s):  
Alexander York ◽  
Stefan Seelecke

AbstractThe rate-dependence of piezoelectric materials resulting from the kinetics of domain switching is an important factor that needs to be included in realistic modeling attempts. This paper provides a systematic study of the rate-dependent hysteresis behavior of a commercially available PZT stack actuator. Experiments covering full as well as minor loops are conducted at different loading rates with polarization and strain recorded. In addition, the creep behavior at different constant levels of the electric field is observed. This provides evidence of kinetics being characterized by strongly varying relaxation times that can be associated with different switching mechanisms.


2018 ◽  
Vol 37 (11) ◽  
pp. 780-794 ◽  
Author(s):  
P Ghabezi ◽  
M Farahani

The main focus of this paper is on the experimental investigation and comparison between different bridging laws. For mode II fracture in the presence of nano-particles, these laws are calculated from three data reduction schemes for describing the bridging zone and trapezoidal traction–separation law parameters. For the calculation of the energy release rate in mode II fracture, three corresponding data reduction schemes, compliance calibration method, corrected beam theory and compliance-based beam method, have been utilized for different percentages of nano-particles in the adhesives and the adherents.


Sign in / Sign up

Export Citation Format

Share Document