Analysis of temperature simulation in downhole reaction chamber of hydrothermal jet drilling

Author(s):  
Zehao Lyu ◽  
Xianzhi Song ◽  
Gensheng Li ◽  
Yu Shi ◽  
Yu Liu
Author(s):  
Brian L. Rhoades

A gas reaction chamber has been designed and constructed for the JEM 7A transmission electron microscope which is based on a notably successful design by Hashimoto et. al. but which provides specimen tilting facilities of ± 15° aboutany axis in the plane of the specimen.It has been difficult to provide tilting facilities on environmental chambers for 100 kV microscopes owing to the fundamental lack of available space within the objective lens and the scope of structural investigations possible during dynamic experiments has been limited with previous specimen chambers not possessing this facility.A cross sectional diagram of the specimen chamber is shown in figure 1. The specimen is placed on a platinum ribbon which is mounted on a mica ring of the type shown in figure 2. The ribbon is heated by direct current, and a thermocouple junction spot welded to the section of the ribbon of reduced cross section enables temperature measurement at the point where localised heating occurs.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 194-209
Author(s):  
Akira Nishimura ◽  
Tomohiro Takada ◽  
Satoshi Ohata ◽  
Mohan Lal Kolhe

Biogas, consisting of CH4 and CO2, is a promising energy source and can be converted into H2 by a dry reforming reaction. In this study, a membrane reactor is adopted to promote the performance of biogas dry reforming. The aim of this study is to investigate the effect of pressure of sweep gas on a biogas dry reforming to get H2. The effect of molar ratio of supplied CH4:CO2 and reaction temperature is also investigated. It is observed that the impact of psweep on concentrations of CH4 and CO2 is small irrespective of reaction temperature. The concentrations of H2 and CO increase with an increase in reaction temperature t. The concentration of H2, at the outlet of the reaction chamber, reduces with a decrease in psweep. It is due to an increase in H2 extraction from the reaction chamber to the sweep chamber. The highest concentration of H2 is obtained in the case of the molar ratio of CH4:CO2 = 1:1. The concentration of CO is the highest in the case of the molar ratio of CH4:CO2 = 1.5:1. The highest sweep effect is obtained at reaction temperature of 500 °C and psweep of 0.045 MPa.


Author(s):  
Liu Changjiang ◽  
Li Zhiming ◽  
Guo Runqiu ◽  
Feng Lansheng ◽  
YangShun Tao

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seok-Ho Maeng ◽  
Hakju Lee ◽  
Min Soo Park ◽  
Suhyun Park ◽  
Jaeki Jeong ◽  
...  

AbstractWe report the extraction of silicon via a carbothermal reduction process using a CO2 laser beam as a heat source. The surface of a mixture of silica and carbon black powder became brown after laser beam irradiation for a few tens of seconds, and clear peaks of crystalline silicon were observed by Raman shift measurements, confirming the successful carbothermal reduction of silica. The influence of process parameters, including the laser beam intensity, radiation time, nitrogen gas flow in a reaction chamber, and the molar ratios of silica/carbon black of the mixture, on the carbothermal reduction process is explained in detail.


1969 ◽  
Vol 47 (22) ◽  
pp. 4175-4182 ◽  
Author(s):  
B. D. Boss ◽  
R. N. Hazlett

The 5-h oxidation of n-dodecane at 200 °C by air at 1 atm is reported for experiments in a borosilicate glass reaction chamber equipped with a gas bubbler. The rate of reaction was limited by the rate of oxygen diffusion from the gas phase due to the rapid reaction of dissolved oxygen. The reaction products were analyzed in aliquots taken periodically from the reaction chamber. Chemical analyses, gas–liquid phase chromatography (g.l.p.c.), tandem g.l.p.c.-mass spectroscopy, infrared, and ultraviolet were used to identify products accounting for 98% of the oxygen reacted. The isomer distribution of the dodecenes, dodecanols, and dodecanones formed, as well as the distribution of carboxylic acids, were determined. Three classes of intramolecular reaction products, cyclic ethers, cyclic hydrocarbons, and lactones, were detected. Many volatile products were detected. A filterable precipitate obtained after 10 h of oxidation was studied using infrared attenuated total reflectance techniques. A reaction mechanism is discussed based on current knowledge of other systems, the products identified, and the stoichiometry of the reaction.


2006 ◽  
Vol 8 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Haiqing Gong ◽  
Naveen Ramalingam ◽  
Longqing Chen ◽  
Jing Che ◽  
Qinghui Wang ◽  
...  

1987 ◽  
Vol 23 (2) ◽  
pp. 60-64
Author(s):  
Z. V. Gerasicheva ◽  
D. M. Soskind ◽  
T. Kh. Melik-Akhnazarov ◽  
O. K. Voronova ◽  
M. A. Tomarkova
Keyword(s):  

Author(s):  
Werner O. Filtvedt ◽  
Morten Melaaen ◽  
Arve Holt ◽  
Massoud Javidi ◽  
Birger Retterstøl Olaisen

The article presents a novel design for a distribution plate. The solution is suitable for a reactor vessel where a reactant gas needs to be maintained at a different temperature from the reaction chamber in order to avoid unwanted occurrences, such as clogging of the distribution plate. A normal procedure involves cooling of the distribution plate which is reported to either increase heat loss substantially or yield insufficient temperature in parts of the reaction chamber. The problem is especially important for reactors where the difference in reactant inlet temperature and desired reaction temperature is large. The investigated design utilized materials of very different thermal conductivity to only cool specific parts of the distribution arrangement and thereby minimize heat loss. Our system is a distribution plate for use in a fluidized bed reactor for silane pyrolysis. However, the solution is general and may be utilized in many types of vessels and chemical reactors.


Sign in / Sign up

Export Citation Format

Share Document