Effects of electrode distance and mixing velocity on current density and methane production in an anaerobic digester equipped with a microbial methanogenesis cell

2017 ◽  
Vol 42 (45) ◽  
pp. 27732-27740 ◽  
Author(s):  
Jun-Gyu Park ◽  
Beom Lee ◽  
Peng Shi ◽  
Yonggeun Kim ◽  
Hang-Bae Jun
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
J. A. Barrios ◽  
A. Cano ◽  
F. F. Rivera ◽  
M. E. Cisneros ◽  
U. Durán

Abstract Background Most of the organic content of waste activated sludge (WAS) comprises microbial cells hard to degrade, which must be pre-treated for energy recovery by anaerobic digestion (AD). Electrooxidation pre-treatment (EOP) with boron-doped diamond (BDD) electrode have been considered a promising novel technology that increase hydrolysis rate, by the disintegrating cell walls from WAS. Although electrochemical oxidation could efficiently solubilize organic substances of macromolecules, limited reports are available on EOP of WAS for improving AD. In this endeavour, the mathematical optimization study and the energy analysis of the effects of initial total solids concentrations [TS] of WAS and current density (CD) during EOP on the methane production and removal of chemical oxygen demand (COD) and volatile solids (VS) were investigated. Because limited reports are available on EOP of WAS for improving biogas production, it is not well understood; however, it has started to attract interest of scientists and engineers. Results In the present work, the energy recovery as biogas and WAS conversion were comprehensively affected by CD and [TS], in an integrated EOP and AD system. When working with WAS at 3% of [TS] pre-treated at current density of 24.1 mA/cm2, the highest COD and VS removal were achieved, making it possible to obtain the maximum methane (CH4) production of 305 N-L/kg VS and a positive energy balance of 1.67 kWh/kg VS. Therefore, the current densities used in BDD electrode are adequate to produce the strong oxidant (hydroxyl radical, ·OH) on the electrode surface, allow the oxidation of organic compounds that favours the solubilization of particulate matter and VS from WAS. Conclusions The improvement of VS removal and COD solubilization were due to the effects of pre-treatments, which help to break down the microbial cells for faster subsequent degradation; this allows a decomposition reaction that leads to biodegrade more compounds during AD. The balance was positive, suggesting that even without any optimization the energy used as electricity could be recovered from the increased methane production. It is worth noting that this kind of analysis have not been sufficiently studied so far. It is therefore important to understand how operational parameters can influence the pre-treatment and AD performances. The current study highlights that the mathematical optimization and energy analysis can make the whole process more convenient and feasible.


2019 ◽  
Vol 219 ◽  
pp. 797-808 ◽  
Author(s):  
Iftikhar Zeb ◽  
Jingwei Ma ◽  
Farrakh Mehboob ◽  
Gopi Krishna Kafle ◽  
Bilal Ahmad Zafar Amin ◽  
...  

2012 ◽  
Vol 65 (7) ◽  
pp. 1252-1257 ◽  
Author(s):  
Nathan D. Park ◽  
Ronald W. Thring ◽  
Steve S. Helle

Fruit and vegetable waste (FVW) was co-digested with first stage (FSS) and second stage anaerobic digester sludge (SSS) separately, over the course of 10 days, in batch reactors. Addition of FVW significantly increased the methane production in both sludges. After 10 days of digestion FSS + FVW produced 514 ± 57 L CH4 kg VS−1added compared with 392 ± 16 L CH4 for the SSS + FVW. The increased methane yield was most likely due to the higher inoculum substrate ratio of the FSS. The final VS and COD contents of the sewer sludge and FVW mixtures were not significantly different from the control values suggesting that all of the FVW added was degraded within 10 days. It is recommended that FVW be added to the first stage of the anaerobic digester in order to maximize methane generation.


2013 ◽  
Vol 16 (2) ◽  
Author(s):  
Wang Yun-Hai ◽  
Kuang Jun-Yao

AbstractNickel and antimony doped tin dioxide (NATO) coated titanium electrodes were used for electrochemical treatment of oilfield produced wastewater. The effects of electrode distance, current density and electrolysis time on COD removal ratio, current efficiency, energy efficiency and BOD to COD ratio were investigated. The optimized electrode distance of 5 mm and current density of 6 mA cm


2011 ◽  
Vol 63 (11) ◽  
pp. 2732-2736 ◽  
Author(s):  
Xu-wen He ◽  
Li-yuan Liu ◽  
Hao Wang ◽  
Gong Zhang ◽  
Jing-wen Gong ◽  
...  

The electrochemical oxidation of the residual ammonia nitrogen contained in biologically pretreated coking wastewater using three-dimensional electrode system was studied. The results show the Ti/RuO2/IrO2 anode plates and the coke have good surface characteristics for the purpose of this study. In addition, studies also show that the three-dimensional electrode system should be able to give a satisfied solution to the residual bio-refractory ammonia nitrogen in biologically pretreated coking wastewater in comparison to conventional two-dimensional electrodes. At coke size of 10–20 mesh, electrode distance of 1.0 cm and current density of 4.5 mA/cm2, the residual ammonia nitrogen in the three-dimensional electrode system was almost completely removed in 60 min.


2013 ◽  
Vol 821-822 ◽  
pp. 1071-1080
Author(s):  
Jing Nie ◽  
Shou Zhi Yi ◽  
Di Miao

The advanced pretreatment by electrolysis of Bohai seawater in Tianjin used a diaphragm electrolyzer in the experiment. Removal efficiency and influence factors of the method were analyzed. Results show that turbidity, organic compounds, SDI and chroma of seawater were effectively decreased by electrolysis. Removal efficiency was significantly increased by current density, operation time and inter-electrode distance, and the optimum electrolytic conditions was determined as inter-electrode distance of 2 cm, current density of 15.87 mA·cm-2, operation time of 10 minutes. It was investigated that when the water quality after electrolysis was of pH 8.6, the chroma and turbidity decreasing trend slowed down, with chroma of 0.052 A, removal rate reached 88.4%; the residual turbidity reduced to 2.52 NTU, removal rate reached 90.71%. A PH of about 8.5, CODCr decreasing trend slowed down, and when CODCr < 750 mg/L, it conformed to the requirements of the reverse osmosis water. With the study on neutralization of steel pickling waste liquor by the by-product of magnesium hydroxide, it is found that the quality of treated water reached 3rd level national emissions standards (300-1000 mg/L). Magnesium hydroxide slurry of Cr (VI) removal rate reached 100%, conforming to the 1st level national industrial wastewater discharge standards (< 0.5 mg/L).


Sign in / Sign up

Export Citation Format

Share Document