Experimental study of the polytropic index of the compression stroke for a direct injection hydrogen engine

2020 ◽  
Vol 45 (52) ◽  
pp. 28196-28203
Author(s):  
Ling-Zhi Bao ◽  
Bai-Gang Sun ◽  
Qing-He Luo ◽  
Xi Wang ◽  
Qing-Yu Niu
2013 ◽  
Vol 68 ◽  
pp. 505-511 ◽  
Author(s):  
Helmisyah Ahmad Jalaludin ◽  
Shahrir Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Bulan Abdullah ◽  
Nik Rosli Abdullah

2009 ◽  
Author(s):  
Dale Turner ◽  
Guohong Tian ◽  
Hongming Xu ◽  
Miroslaw L. Wyszynski ◽  
Eudoxios Theodoridis

2005 ◽  
Vol 6 (5) ◽  
pp. 433-442 ◽  
Author(s):  
A Sakai ◽  
H Takeyama ◽  
H Ogawa ◽  
N Miyamoto

The charge mixture in a premixed charge compression ignition (PCCI) engine with direct in-cylinder injection early in the compression stroke is still heterogeneous even at the compression end. Direct injection of a low-volatility fuel, such as diesel fuel, early in the compression stroke results in adhesion of unevaporated fuel on the cylinder liner wall. It may be possible to improve both mixture formation and homogeneity, and decrease wall wetting by using higher-volatility fuels with distillation temperatures lower than the in-cylinder gas temperature early in the compression stroke. This research addressed the potential for improvements in early direct injection type PCCI combustion with a higher-volatility fuel, experimentally and computationally. A normal heptane + isooctane blended fuel with ignitability similar to diesel fuel in PCCI operation was used as the higher-volatility fuel. The experimental results showed that the deterioration in thermal efficiency that occurs with advanced injection timings with ordinary diesel fuel could be eliminated with the higher-volatility fuel without significantly altering the total hydrocarbons (THC) and CO emissions. With early injection timings, the rate of heat release with diesel fuel is smaller than with higher-volatility fuels. This result suggests that with diesel fuel there is significant fuel adhesion to the cylinder liner wall and also absorption into the lubricating oil.


2018 ◽  
Vol 234 ◽  
pp. 03007
Author(s):  
Plamen Punov ◽  
Tsvetomir Gechev ◽  
Svetoslav Mihalkov ◽  
Pierre Podevin ◽  
Dalibor Barta

The pilot injection strategy is a widely used approach for reducing the noise of the combustion process in direct injection diesel engines. In the last generation of automotive diesel engines up to several pilot injections could occur to better control the rate of heat release (ROHR) in the cylinder as well as the pollutant formation. However, determination of the timing and duration for each pilot injection needs to be precisely optimised. In this paper an experimental study of the pilot injection strategy was conducted on a direct injection diesel engine. Single and double pilot injection strategy was studied. The engine rated power is 100 kW at 4000 rpm while the rated torque is 320 Nm at 2000 rpm. An engine operating point determined by the rotation speed of 1400 rpm and torque of 100 Nm was chosen. The pilot and pre-injection timing was widely varied in order to study the influence on the combustion process as well as on the fuel consumption.


Sign in / Sign up

Export Citation Format

Share Document