In vitro and in vivo degradation behavior and the long-term performance of biodegradable PLCL balloon implants

2020 ◽  
Vol 574 ◽  
pp. 118870 ◽  
Author(s):  
Moran Haim Zada ◽  
Awanish Kumar ◽  
Omar Elmalak ◽  
Elana Markovitz ◽  
Ruthy Icekson ◽  
...  
1995 ◽  
Vol 14 (2) ◽  
pp. 180-186 ◽  
Author(s):  
J. Y. Reginster ◽  
R. Deroisy ◽  
B. Zegels ◽  
I. Jupsin ◽  
A. Albert ◽  
...  

2018 ◽  
Author(s):  
Dayo O. Adewole ◽  
Laura A. Struzyna ◽  
James P. Harris ◽  
Ashley D. Nemes ◽  
Justin C. Burrell ◽  
...  

AbstractAchievements in intracortical neural interfaces are compromised by limitations in specificity and long-term performance. A biological intermediary between devices and the brain may offer improved specificity and longevity through natural synaptic integration with deep neural circuitry, while being accessible on the brain surface for optical read-out/control. Accordingly, we have developed the first “living electrodes” comprised of implantable axonal tracts protected within soft hydrogel cylinders for the biologically-mediated monitoring/modulation of brain activity. Here we demonstrate the controlled fabrication, rapid axonal outgrowth, reproducible cytoarchitecture, and simultaneous optical stimulation and recording of neuronal activity within these engineered constructs in vitro. We also present their transplantation, survival, integration, and optical recording in rat cortex in vivo as a proof-of-concept for this neural interface paradigm. The creation and functional validation of these preformed, axon-based “living electrodes” is a critical step towards developing a new class of biohybrid neural interfaces to probe and modulate native circuitry.


1986 ◽  
Vol 15 (1) ◽  
pp. 19-22 ◽  
Author(s):  
G H Isaac ◽  
J R Atkinson ◽  
D Dowson ◽  
B M Wroblewski

A number of polyethylene acetabular cups (59) and femoral stems (38) of Charnley hip prostheses were obtained following revision surgery and examined by scanning electron microscopy. In many cases, acrylic cement particles were embedded in the articulating surface of the cups. These particles caused surface pitting. The appearance of the articulating surfaces suggested that some cement had been present from the time of arthroplasty. In other cups there was evidence of cement ingress during the service life. Failure to use sufficient cement at arthroplasty resulted in cavities on the backs of the cups. Many femoral heads had become scratched in vivo, the surface roughness increasing from an initial value less than 0.02 μm Ra to a value on removal of 0.07 μm Ra. The increased roughness increases the amount of wear in the polyethylene sockets. Laboratory tests show that retrieved acrylic cement particles will scratch stainless steel, and it is our conclusion that entrapped cement will damage both components of the prosthesis and may cause premature failure.


2016 ◽  
Vol 33 (4) ◽  
pp. 37-48 ◽  
Author(s):  
Takashi Tokuda ◽  
Toshikazu Kawamura ◽  
Keita Masuda ◽  
Tomohiro Hirai ◽  
Hironari Takehara ◽  
...  

2009 ◽  
Vol 1190 ◽  
Author(s):  
Bernhard Hiebl ◽  
Karl Kratz ◽  
Rosemarie Fuhrmann ◽  
Friedrich Jung ◽  
Andres Lendlein ◽  
...  

AbstractThe degradation behavior of biodegradable multiblock copolymers (PDC) containing poly(p-dioxanone) hard segments (PPDO) and crystallizable poly(epsilon-caprolactone) switching segments (PCL) synthesized via co-condensation of two oligomeric macrodiols with an aliphatic diisocyanate as junction unit was explored in in vivo and in vitro experiments. The in vitro experiments for enzymatic degradation resulted that the poly(epsilon-caprolactone) segments are degraded faster, than the poly(p-dioxanone) segments. During degradation the outer layer of the test specimen becomes porous. Finally non-soluble degradation products in form of particles were found at the surface. This observation is in good agreement with the in vivo studies, where the non-soluble degradation products in the periimplantary tissues showed a diameter of 1 – 3 micron.


2020 ◽  
Vol 31 (2) ◽  
pp. 107-117
Author(s):  
Toshiyuki Tateiwa ◽  
Yasuhito Takahashi ◽  
Giuseppe Pezzotti ◽  
Takaaki Shishido ◽  
Toshinori Masaoka ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 275-285 ◽  
Author(s):  
Kai Chen ◽  
Xinhui Xie ◽  
Hongyan Tang ◽  
Hui Sun ◽  
Ling Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document