scholarly journals Pareto front feature selection based on artificial bee colony optimization

2018 ◽  
Vol 422 ◽  
pp. 462-479 ◽  
Author(s):  
Emrah Hancer ◽  
Bing Xue ◽  
Mengjie Zhang ◽  
Dervis Karaboga ◽  
Bahriye Akay
2017 ◽  
Vol 8 (2) ◽  
pp. 50-66 ◽  
Author(s):  
Diogo L. da Silva ◽  
Leticia M. Seijas ◽  
Carmelo J. A. Bastos-Filho

This paper proposes the application of a swarm intelligence algorithm called Artificial Bee Colony (ABC) for the feature selection to feed a Random Forest (RF) classifier aiming to recognise Traffic Signs. In this paper, the authors define and assess several fitness functions for the feature selection stage. The idea is to minimise the correlation and maximise the entropy of a set of masks to be used for feature extraction results in a higher information gain and allows to reach recognition accuracies comparable with other state-of-art algorithms. The RF comprises as a committee based on decision trees, which allows handling large datasets and features with high performance, enabling a Traffic Sign Recognition (TSR) system oriented for real-time implementations. The German Traffic Sign Recognition Benchmark (GTSRB) was used for experiments, serving as a real basis for comparison of performance for the authors' proposal.


Author(s):  
L. S. Suma ◽  
S. S. Vinod Chandra

In this work, we have developed an optimization framework for digging out common structural patterns inherent in DNA binding proteins. A novel variant of the artificial bee colony optimization algorithm is proposed to improve the exploitation process. Experiments on four benchmark objective functions for different dimensions proved the speedier convergence of the algorithm. Also, it has generated optimum features of Helix Turn Helix structural pattern based on the objective function defined with occurrence count on secondary structure. The proposed algorithm outperformed the compared methods in convergence speed and the quality of generated motif features. The motif locations obtained using the derived common pattern are compared with the results of two other motif detection tools. 92% of tested proteins have produced matching locations with the results of the compared methods. The performance of the approach was analyzed with various measures and observed higher sensitivity, specificity and area under the curve values. A novel strategy for druggability finding by docking studies, targeting the motif locations is also discussed.


Sign in / Sign up

Export Citation Format

Share Document