traffic sign
Recently Published Documents


TOTAL DOCUMENTS

1441
(FIVE YEARS 522)

H-INDEX

49
(FIVE YEARS 10)

Author(s):  
Ida Syafiza Binti Md Isa ◽  
Choy Ja Yeong ◽  
Nur Latif Azyze bin Mohd Shaari Azyze

Nowadays, the number of road accident in Malaysia is increasing expeditiously. One of the ways to reduce the number of road accident is through the development of the advanced driving assistance system (ADAS) by professional engineers. Several ADAS system has been proposed by taking into consideration the delay tolerance and the accuracy of the system itself. In this work, a traffic sign recognition system has been developed to increase the safety of the road users by installing the system inside the car for driver’s awareness. TensorFlow algorithm has been considered in this work for object recognition through machine learning due to its high accuracy. The algorithm is embedded in the Raspberry Pi 3 for processing and analysis to detect the traffic sign from the real-time video recording from Raspberry Pi camera NoIR. This work aims to study the accuracy, delay and reliability of the developed system using a Raspberry Pi 3 processor considering several scenarios related to the state of the environment and the condition of the traffic signs. A real-time testbed implementation has been conducted considering twenty different traffic signs and the results show that the system has more than 90% accuracy and is reliable with an acceptable delay.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 112
Author(s):  
Shangwang Liu ◽  
Tongbo Cai ◽  
Xiufang Tang ◽  
Yangyang Zhang ◽  
Changgeng Wang

Aiming at recognizing small proportion, blurred and complex traffic sign in natural scenes, a traffic sign detection method based on RetinaNet-NeXt is proposed. First, to ensure the quality of dataset, the data were cleaned and enhanced to denoise. Secondly, a novel backbone network ResNeXt was employed to improve the detection accuracy and effection of RetinaNet. Finally, transfer learning and group normalization were adopted to accelerate our network training. Experimental results show that the precision, recall and mAP of our method, compared with the original RetinaNet, are improved by 9.08%, 9.09% and 7.32%, respectively. Our method can be effectively applied to traffic sign detection.


Author(s):  
Wei Li ◽  
Haiyu Song ◽  
Pengjie Wang

Traffic sign recognition (TSR) is the basic technology of the Advanced Driving Assistance System (ADAS) and intelligent automobile, whileas high-qualified feature vector plays a key role in TSR. Therefore, the feature extraction of TSR has become an active research in the fields of computer vision and intelligent automobiles. Although deep learning features have made a breakthrough in image classification, it is difficult to apply to TSR because of its large scale of training dataset and high space-time complexity of model training. Considering visual characteristics of traffic signs and external factors such as weather, light, and blur in real scenes, an efficient method to extract high-qualified image features is proposed. As a result, the lower-dimension feature can accurately depict the visual feature of TSR due to powerful descriptive and discriminative ability. In addition, benefiting from a simple feature extraction method and lower time cost, our method is suitable to recognize traffic signs online in real-world applications scenarios. Extensive quantitative experimental results demonstrate the effectiveness and efficiency of our method.


Author(s):  
Xiaomei Li ◽  
Zhijiang Xie ◽  
Xiong Deng ◽  
Yanxue Wu ◽  
Yangjun Pi

2022 ◽  
Vol 355 ◽  
pp. 01007
Author(s):  
Yu Meng ◽  
Mengru Sun ◽  
Dan Li ◽  
Yufeng Shi ◽  
Cheng Cheng ◽  
...  

In this paper, a large number of digital printing reflective film retroreflectivity measurement. Based on the multi-angle test of the reflective film of the mainstream manufacturers in the market, the reverse reflection coefficient of the digital printing reflective film was obtained. Through the curve fitting of the measured values of the backreflection coefficient under different measuring angles by using the scatter plot, the variation law of the luminosity of the digital printing reflective film with incident Angle and observation Angle was obtained. The variation law of backreflection coefficient explored in this paper has certain significance to the application guidance of digital printing reflective film for traffic signs.


2022 ◽  
Vol 355 ◽  
pp. 03023
Author(s):  
Linfeng Jiang ◽  
Hui Liu ◽  
Hong Zhu ◽  
Guangjian Zhang

With the development of automatic driving technology, traffic sign detection has become a very important task. However, it is a challenging task because of the complex traffic sign scene and the small size of the target. In recent years, a number of convolutional neural network (CNN) based object detection methods have brought great progress to traffic sign detection. Considering the still high false detection rate, as well as the high time overhead and computational overhead, the effect is not satisfactory. Therefore, we employ lightweight network model YOLO v5 (You Only Look Once) as our work foundation. In this paper, we propose an improved YOLO v5 method by using balances feature pyramid structure and global context block to enhance the ability of feature fusion and feature extraction. To verify our proposed method, we have conducted a lot of comparative experiments on the challenging dataset Tsinghua-Tencent-100K (TT100K). The experimental results demonstrate that the [email protected] and [email protected]:0.95 are improved by 1.9% and 2.1%, respectively.


Sign in / Sign up

Export Citation Format

Share Document