Interaction of opioid growth factor (OGF) and opioid antagonist and their significance in cancer therapy

2019 ◽  
Vol 75 ◽  
pp. 105785 ◽  
Author(s):  
Ruizhe Wang ◽  
Yi Zhang ◽  
Fengping Shan
2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0017
Author(s):  
Jarrett D. Cain ◽  
Michelle Titunick ◽  
Patricia McLaughlin ◽  
Ian Zagon

Category: Diabetes Introduction/Purpose: Complications associated with the diabetes include increased incidence of fracture healing, delayed fracture healing, delayed osteoblasts cell replication, decreased angiogenesis, migration and/or osteoblast cell differentiation. The cellular events involved in bone healing are adversely affected by diabetes; however, can be modulated by the Opioid Growth Factor (OGF)–OGF receptor (OGFr) is an inhibitory peptide that downregulates DNA synthesis in a tissue nonspecific manner. Diabetes is associated with elevated serum levels of OGF and dysregulation of the OGFr leading to multiple complications related to healing, sensitivity, and regeneration. This study explores the presence and function of the OGF-OGFr axis in bone tissue from type 1 diabetic rats examining intact and fractured femurs during early phases of the repair process Methods: Seven-week-old Sprague Dawley rats were injected with streptozotocin (40mg/kg i.p.) to induce T1D; other rats received buffer only and served as controls. After one month, hyperglycemia rats underwent surgery to produce a fracture at the distal third of the femur. Four diabetic rats received opioid antagoinist (naltrexone) and calcium sulfate and all remaining rats received calcium sulfate with water only. X-rays were taken immediately after surgery and after rats were euthanized on post-surgery; femur and tibia were collected for protein isolation, western blot analysis along with frozen or paraffin-embedded for histological analysis Results: Immunofluorescence indicated approximately 90% increase in opioid growth factor receptor expression in diabetic femurs compared to age-matched normal femurs. Western Blotting also suggested an increase in the receptor protein in diabetic bones relative to normal bone. TRAP staining for osteoclasts was greater in control and opioid antagonist-treated diabetic fractures when compared to the number of osteoclasts in vehicle-treated diabetic fractured femurs. Safranin O stained sections revealed approximately more bone in opioid growth receptor antagonist-treated diabetic bone fractures than in vehicle-treated bone fractures Conclusion: These data support our hypothesis that expression levels of OGFr are dysregulated in the bone of diabetic patients leading to complications in bone healing. Moreover, modulation of the OGF-OGFr pathway with receptor antagonists restored some aspects of bone healing. With further study, these preliminary results support the role of the OGF-OGFr axis in treatment of diabetic bone healing. New therapies to target dysregulation of the OGF-OGFr regulatory pathway in diabetes would provide a safe and effective disease-modifying treatment for delayed bone healing.


2010 ◽  
Vol 299 (3) ◽  
pp. R774-R785 ◽  
Author(s):  
Fan Cheng ◽  
Patricia J. McLaughlin ◽  
William A. Banks ◽  
Ian S. Zagon

The opioid growth factor (OGF; [Met5]-enkephalin), a constitutively expressed and tonically active inhibitory peptide, interacts with the OGF receptor (OGFr) to form an endogenous growth-regulating pathway in homeostasis. Amplification of OGF-OGFr interfacing in animal and clinical studies depresses development, neoplasia, angiogenesis, and immunity. Disruption of the OGF-OGFr axis accelerates cell proliferation and has been particularly important in wound repair. To investigate how OGF enters cells, OGF was labeled with 5,6-tetramethylrhodamine OGF (RhoOGF) to study its uptake in live cells. African green monkey kidney cells (COS-7) incubated with RhoOGF exhibited a temperature-dependent course of entry, being internalized at 37°C but not at 4°C. RhoOGF was detected in the cytoplasm 15 min after initial exposure, observed in both cytoplasm and nucleus within 30 min, and remained in the cells for as long as 5 h. A 100-fold excess of OGF or the opioid antagonist naltrexone, but not other opioid ligands (some selective for classic opioid receptors), markedly reduced entry of RhoOGF into cells. RhoOGF was functional because DNA synthesis in cells incubated with RhoOGF (10−5 to 10−8 M) was decreased 24–36%, and was comparable to cells treated with unlabeled OGF (reductions of 26–39%). OGF internalization was dependent on clathrin-mediated endocytosis, with addition of clathrin siRNA diminishing the uptake of RhoOGF and upregulating DNA synthesis. RhoOGF clathrin-mediated endocytosis was unrelated to endosomal or Golgi pathways. Taken together, these results suggest that OGF enters cells by active transport in a saturable manner that requires clathrin-mediated endocytosis.


1997 ◽  
Vol 272 (4) ◽  
pp. R1094-R1104
Author(s):  
I. S. Zagon ◽  
Y. Wu ◽  
P. J. McLaughlin

Native opioid peptides serve as growth factors in a number of normal and neoplastic cells and tissues. This study investigated the influence of opioids on circadian rhythm-dependent DNA synthesis in mouse esophagus during homeostatic renewal. In contrast to a labeling index (LI) of 24.0% at 0630 and 5.5% at 1600, disruption of opioid-receptor interaction by the potent opioid antagonist naltrexone hydrochloride (NTX; 10 mg/kg) in mice resulted in an elevation of 49% in DNA synthesis of esophageal epithelial cells at 1600, but had no effect at 0630. Mice subjected to [Met5]enkephalin (1 mg/kg) had an LI that was decreased 23% from control levels at 0630, but was unaffected at 1600. This decrease in DNA synthesis was blocked by concomitant administration of naloxone (10 mg/kg); naloxone alone had no influence on cell replicative processes. In tissue culture studies, NTX and OGF markedly increased and decreased, respectively, the LI from control values. Both opioid growth factor (OGF) and its receptor, zeta, were detected in all but the cornified layer of mouse esophageal epithelium and in the epithelial cells of the stomach and small and large intestines. In addition, both peptide and receptor were observed in the basal and suprabasal cells of human esophageal epithelium. These results indicate that an endogenous opioid peptide (OGF) and its receptor (zeta) reside in gastrointestinal epithelium and play a role in cellular renewal processes in a tonically inhibitory, direct, and circadian rhythm-dependent fashion.


1994 ◽  
Vol 267 (3) ◽  
pp. R645-R652 ◽  
Author(s):  
I. S. Zagon ◽  
Y. Wu ◽  
P. J. McLaughlin

In addition to neuromodulation, endogenous opioids also serve as growth factors. To investigate the involvement of the naturally occurring opioid peptide [Met5]enkephalin [termed opioid growth factor (OGF)] in the renewal of epithelium, adult mice were given systemic injections of OGF (1 mg/kg) and examined 2 h later at 0700 or 1700 h. DNA synthesis in the tongue was investigated using [3H]thymidine and autoradiography. OGF depressed DNA synthesis of the basal epithelial cells in the tip, and dorsal and ventral surfaces of the tongue (42-44% of control levels) only at 0700 h. This decrease in DNA synthesis was blocked by concomitant administration of the opioid antagonist naloxone (10 mg/kg); naloxone alone had no influence on cell replicative processes. Both OGF and its receptor, zeta (zeta), were detected in the stratified squamous epithelium of the ventral and dorsal surfaces of the tongue by immunocytochemistry. Photodensitometric measurements of immunocytochemical preparations revealed almost twofold more OGF and zeta-receptor immunoreactivity at 1700 h than at 0700 h. These results indicate that an endogenous opioid peptide and its receptor are present and govern cellular renewal processes in the tongue and regulate DNA synthesis in a circadian rhythm-dependent fashion.


1995 ◽  
Vol 268 (4) ◽  
pp. R942-R950 ◽  
Author(s):  
I. S. Zagon ◽  
J. W. Sassani ◽  
P. J. McLaughlin

In addition to neuromodulation, endogenous opioid peptides serve as growth factors. To determine involvement of opioids in the homeostatic renewal and repair of the corneal epithelium, epithelial outgrowths from 3-mm explants of rabbit cornea were investigated. Blockade of opioid-receptor interaction by the potent opioid antagonist naltrexone (NTX) for 7 days significantly increased the extent of outgrowths and the number and labeling index (DNA synthesis) of epithelial cells, relative to control levels. Outgrowths exposed to the opioid growth factor (OGF) [Met5]enkephalin for 7 days were subnormal in extent and labeling index and displayed alterations in architectural pattern. The effects of OGF on epithelial outgrowth were blocked by concomitant exposure to the opioid antagonist naloxone; naloxone alone had no effect on growth at the concentration utilized. NTX and OGF were active in both serum-containing and serum-free cultures. Immunocytochemical investigations showed that both OGF and its opioid receptor zeta (zeta) were present in epithelial cells growing in control media. The results indicate that an endogenous opioid peptide and its receptor are present in mammalian corneal epithelium and serve to modulate cell proliferation, migration, and organization.


Sign in / Sign up

Export Citation Format

Share Document