Facies analysis, diagenesis and sequence stratigraphy of the carbonate-evaporite succession of the Upper Jurassic Surmeh Formation: Impacts on reservoir quality (Salman Oil Field, Persian Gulf, Iran)

2017 ◽  
Vol 129 ◽  
pp. 179-194 ◽  
Author(s):  
Maryam Beigi ◽  
Arman Jafarian ◽  
Mohammad Javanbakht ◽  
H.A. Wanas ◽  
Frank Mattern ◽  
...  
Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


2017 ◽  
Vol 91 (5) ◽  
pp. 1797-1819 ◽  
Author(s):  
Mahnaz SABBAGH BAJESTANI ◽  
Asadollah MAHBOUBI ◽  
Reza MOUSSAVI-HARAMI ◽  
Ihsan AL-AASM ◽  
Mehdi NADJAFI

2021 ◽  
Vol 198 ◽  
pp. 108180
Author(s):  
Ebrahim Sfidari ◽  
Mohammad Sharifi ◽  
Abdolhossein Amini ◽  
Seyed Mohammad Zamanzadeh ◽  
Ali Kadkhodaie

Facies ◽  
2012 ◽  
Vol 59 (4) ◽  
pp. 863-889 ◽  
Author(s):  
A. Aghaei ◽  
A. Mahboubi ◽  
R. Moussavi-Harami ◽  
C. Heubeck ◽  
M. Nadjafi

2003 ◽  
Vol 20 (1) ◽  
pp. 467-482 ◽  
Author(s):  
Simon Guscott ◽  
Ken Russell ◽  
Andrew Thickpenny ◽  
Robert Poddubiuk

AbstractThe Scott Field straddles Blocks 15/21 and 15/22 on the southern flanks of the Witch Ground Graben in the Outer Moray Firth Basin, UKCS. The oil field is developed in the highly productive Upper Jurassic Humber Group sandstones of Oxfordian to Kimmeridgian age. The field was discovered in 1983, sanctioned in 1990, and produced first oil in 1993.The field structure, effectively a large southwards tilted fault block, is compartmentalized into a series of four main pressure isolated fault blocks by mid to late Jurassic faulting. The Kimmeridge Clay Formation provides both the top seal and the source of the trapped hydrocarbons. Fluid contact, overpressure and compositional trends suggest that the trap was filled primarily from the north. Some trap-defining faults were already active during the deposition of the reservoir intervals. Well data indicate that the development of accommodation space was technically controlled during this period, with subsidence occurring more rapidly in the western areas of the field.The Scott Field reservoir consists of two major sand packages, the Scott Sandstone Member and the Piper Sandstone Member, bounded above and below by marine flooding surfaces. The late Oxfordian Scott Sandstone Member consists of a westwards prograding marine shoreface sandstone overlain by aggradational and retrogradational back-barrier deposits. Above this, the Mid Shale is a regionally extensive flooding event separating the Scott Sandstone Member from the overlying Piper Sandstone Member. The early Kimmeridgian Piper Sandstone Member consists of stacked mass flow sandstones, overlain by a shoreface/back-barrier system. Lateral facies changes and thickness variations significantly affect reservoir distribution in both Scott and Piper intervals.The best reservoir quality occurs within the coarsest grained, highest energy facies, particularly the shoreface and proximal washover deposits. At the crest of the field, 10400 ft TVDss, multi-Darcy permeabilities and porosities of 20% are common. However, reservoir quality declines progressively downflank due to increased quartz cementation and compaction.The Scott Field currently produces from 23 wells supported by 20 water injectors. Current modelling is aimed at targeting bypassed oil to increase ultimate recovery. The field has presently produced 300 MMSTB of oil from forecast reserves of 440 MMSTB with an estimated ultimate recovery factor of c. 46%.


Author(s):  
Masoud Soleimani ◽  
◽  
Bahman Soleimani ◽  
Bahram Alizadeh ◽  
Iman Veisy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document